48276 (588531), страница 2
Текст из файла (страница 2)
В первой и второй строке исходным является изображение руки. Как видно, область движения руки не является однородной. В результате работы алгоритма, область движения руки сводиться к однородной области правильной формы (круг, прямоугольник).
В третьей строке исходным является изображение камня на игровой доске. Аналогично, в результате работы алгоритма область движения камня сводиться к однородной области правильной формы (круг, прямоугольник).
1.3 Метод гистограмм
В методе используется гистограмма изображения искомого объекта для нахождения объекта с такими же цветовыми характеристиками на серии изображений.
Нужно построить изображение в оттенках серого цвета, содержащее необходимые нам объекты.
Введём оператор, который преобразует функцию яркости изображения
в функцию количественного распределения пикселей с определенным значением яркости (гистограмму)
(где k – численное значение яркости):
Обратный оператор
преобразует гистограмму в изображение в оттенках серого.
Алгоритм состоит из следующих этапов:
-
Построение гистограмм искомого объекта
и исходного изображения
-
Формируем новую гистограмму, как нормированное произведение
и
:
-
Используя обратное преобразование
, получаем двумерную функцию, которая является искомым изображением в оттенках серого:
Метод был адаптирован и реализован функциями библиотеки OpenCV. Результаты применения метода приведены на рис.
| Доска | Черный камень | Белый камень | |||||
| Искомое изображение |
|
|
| ||||
| Гистограмма искомого изображения | |||||||
| Исходное изображение | По гистограмме доски | По гистограмме черного камня | По гистограмме белого камня | ||||
| № |
|
|
|
| |||
| 1 | |||||||
| 2 |
| ||||||
| 3 |
|
|
|
| |||
Искомыми изображениями являются изображения игровой доски, чёрного и белого камня. В таблице представлены их гистограммы.
Во всех трёх опытах к исходному изображению, содержащему область движения, применялся вышеописанный метод. В результате в каждом из опытов были получены три изображения. Каждое из изображений содержит область, в которой нахождение искомого объекта максимально, т.е. максимально количество белых пикселей в этой области
1.4. Подготовка изображения к распознаванию
С точки зрения задачи распознавания, более удобно использовать изображения объектов, имеющие одинаковый размер и приблизительно одинаковую ориентацию в пространстве. Однако, алгоритмы выделения объектов, возвращают объекты, искаженные перспективой – различных размеров и произвольно ориентированных на изображении.
Для приведения изображения найденного объекта к общему виду, необходимо повернуть его на нужный угол. В эталонных и исследуемых изображениях объектов находятся две контрольные точки, после чего изображения разворачивают, так чтобы вектора, соединяющие эти точки, совпали.
Контрольными точками могут быть, например:
-
Видимый центр изображения.
-
Центр масс изображения.
-
Точка, заметно отличающаяся от остальных по цвету.
-
Центр маркера, поставленного на объекте
и др.
Также, необходимо, привести эталонные и исследуемые изображения к одному размеру.
Перечисленные выше операции выполняются аффинными преобразованиями над матрицами изображений, общий вид которых:
Используются частные случаи аффинных преобразованияй:
-
Растяжение (сжатие) вдоль координатных осей, задаваемое в виде:
Растяжению вдоль соответствующей оси соответствует значение масштабного множителя большего единицы. В однородных координатах матрица растяжения (сжатия) имеет вид
.
-
Поворот вокруг начальной точки на угол
, описываемый формулой:
Матрица вращения (для однородных координат)
.
-
Перенос, задаваемый простейшими соотношениями:
Матрица переноса имеет вид
.
2. Задача распознавание объекта
Данное раздел включает в себя широкий класс задач, различающихся в основном тем, каким образом задаются характеристики объекта и в как требуется его классифицировать.
Методы, применяемые для решения поставленной задачи, во многом зависят от особенностей объекта, который требуется локализовать. Зачастую, постановка задачи неформальна – описать свойства нужного объекта в математических терминах бывает достаточно сложно, поэтому задание часто звучит, например, так - нужно найти на изображении все, похожее вот на "это" (картинка с примером). Или, даже просто словами – найти на изображении всех, скажем, божьих коровок. Соответственно, решение задачи заключается в формулировке свойств распознаваемого объекта и конструировании устойчивого метода нахождения объектов, отвечающих указанным свойствам.
В числе основных сложностей при решении данной задачи – большое разнообразие входных данных и трудность выделения общих свойств внешнего вида для объектов естественного происхождения. Объекты искусственного происхождения обычно распознавать значительно легче.
В методах описания свойств объекта для нахождения можно выделить два крайних направления:
Обобщение и использование эмпирических данных и правил об объекте (top-down, bottom-up)
Идея заключается в нахождении, обобщении и формулировке в математических терминах эмпирических наблюдений и правил о том, как на изображениях обычно выглядит интересующий нас объект. Продолжая пример с божьей коровкой, можно подметить следующее:
-
Божьи коровки обычно рыжего или красного цвета;
-
На спине у них обычно присутствует некоторое количество черных пятнен (можно также посчитать примерное соотношения размера пятен с размером насекомого);
-
Спина у них разделена на две половинки темной линией, обычно видимой. С одной из сторон этой линии у божьей коровки голова – темная, соотносящаяся по размерам с телом в некоторой пропорции;
-
Сверху божья коровка выглядит примерно как эллипс;
Хорошо, если известны дополнительные условия задачи и получения входных изображений, например:
-
Приблизительно известны ожидаемые размеры божьих коровок (то есть известно увеличение камеры и расстояние до снимаемого объекта);
-
Нас интересуют только божьи коровки, сидящие на листьях (значит, если принять, что листья зеленые, можно рассматривать только объекты, находящиеся на зеленом фоне);
Опираясь на перечисленные правила можно построить некий алгоритм их проверки и нахождения объектов на изображении, отвечающих этим правилам. Сложность заключается в том, что, во-первых, правила могут не описывать всех свойств объекта, во-вторых, правила могут выполняться не всегда, в-третьих, в процессе нахождения правил и их математической формулировке происходит ряд упрощений, уводя все дальше от вида реального объекта. Понятно, что успешность описанного метод напрямую зависит от фантазии и наблюдательности разработчика.
Моделирование внешнего вида объекта, использование инструментария распознавания образов (pattern recognition) .
Суть этого подхода заключается в вычислении некоторых числовых характеристик изображения моделируемого объекта (вектора признаков) и применение различных математических методов для определения "похожести" тестовых изображений на изображение объекта, основываясь на этих характеристиках.
Например, само изображение требуемого объекта можно напрямую представить как вектор в многомерном пространстве и натренировать некоторый классификатор с помощью набора примеров изображений объектов. Классификатор в данном случае означает некоторый инструмент, принимающий на вход изображение, представленное в виде вектора в многомерном пространстве, и выдающего на выходе некую информацию, классифицирующую входное изображение относительно некоторого признака.
Примеры часто используемых классификаторов:
-
Метод наименьших квадратов;
-
Прямое сравнение по какой-либо метрике пространства векторов признаков (например, сумме разности каждого элемента вектора) тестового изображения с изображениями-шаблонами (template-matching);
-
Нейросети (обычно для черно-белых изображений) – на входы нейросети подаются значения элементов вектора, на выходах формируется сигнал, классифицирующий объект на изображении;
-
Метод опорных векторов (support vector machines) – для распознавания изображений;
-
Моделирование многомерной функции распределения векторов признаков изображений объекта, оценка вероятности принадлежности тестового изображению к смоделированному распределению (факторный анализ, метод главных компонент, анализ независимых компонент, линейный дискриминантный анализ);
-
Деформируемые модели;
Прямое представление черно-белого изображения размера m*n в качестве вектора порождает пространство размерности m*n (яркость каждого пикселя – значение элемента вектора в таком пространстве). То есть изображение сравнительно небольшого разрешения (100x100) порождает пространство размерности 10,000. Работать в таком пространстве непросто, поэтому применяются различные методики снижения размерности, например метод главных компонент (principal components analysis, PCA)
Другие примеры характеристик (признаков) изображений, используемых для их классификации и распознавания:
-
Статистика распределения цветов (в различных представлениях, в том числе гистограмма изображения);
-
Статистические моменты (среднее, дисперсия, скрытые Марковские модели);
Количество и свойства графических примитивов в объекте (прямых линий, окружностей – для распознавания символов) (на основе преобразования Хафа)
2.1. Метод наименьших квадратов
Перед тем, как начинать рассмотрение МГУА, было бы полезно вспомнить или узнать впервые метод наименьших квадратов — наиболее распространенный метод подстройки линейно зависимых параметров.
Рассмотрим для примера МНК для трех аргументов:
Пусть функция T=T(U, V, W) задана таблицей, то есть из опыта известны числа Ui, Vi, Wi, Ti ( i = 1, … , n). Будем искать зависимость между этими данными в виде:
(ф. 1)















