47289 (588477), страница 16

Файл №588477 47289 (Исследование уровня защиты и эффективности применения средств защиты корпоративных сетей) 16 страница47289 (588477) страница 162016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

В этом методе эксперту или группе экспертов предъявляется список всех событий. Эксперт должен указать последовательно вероятность всех событий. Возможны различные модификации метода. В одной из модификаций предлагается сначала выбрать наиболее вероятное событие из предложенного списка, а затем оценить его вероятность. После этого событие из списка удаляется, а к оставшемуся списку применяется уже описанная процедура. Сумма всех полученных вероятностей должна равняться единице.

Метод отношений.

Эксперту сначала предлагается выбрать наиболее вероятное событие. Этому событию приписывается неизвестная вероятность P1. Затем эксперт должен оценить отношения вероятностей всех остальных событий к вероятности P1 выделенного события (коэффициенты С2,..., CN). С учетом того, что сумма вероятностей равна 1, составляется уравнение:

Pl(l + C2+C3 + ... +CN) = 1.

Решив это уравнение и найдя величину P1, можно вычислить искомые вероятности.

Метод собственного значения.

Метод основан на том, что неизвестный вектор вероятностей (Р1,...,Pn) является собственным вектором некоторой специально построенной матрицы, отвечающим ее наибольшему собственному значению. Сначала эксперту задается вопрос, какое из двух событий более вероятно. Предположим, что более вероятно событие S1. Затем эксперта спрашивают, во сколько раз событие S1 вероятнее, чем S2. Полученное от эксперта отношение записывается на соответствующее место в матрице.

Метод равноценной корзины.

Этот метод позволяет получить вероятность исходя из экспертного сравнения полезности альтернатив. Предположим, надо вычислить вероятность некоторого события S1. Определим какие-либо два выигрыша, в частности денежных, которые существенно различны, например: первый выигрыш - 1 млн. грн., а второй О грн., и предложим эксперту на выбор участие в одной из двух лотерей. Первая лотерея состоит в том, что выигрыш в 1 млн. грн. эксперт получает, если состоится событие S1, а выигрыш в 0 грн. - если событие не происходит. Для организации второй лотереи представим себе гипотетическую корзину, заполненную белыми и черными шарами, первоначально в равном количестве, скажем, по 50 шаров каждого цвета. Если вынутый шар белый, то участнику достается 1 млн. грн., если черный - 0 грн. Эксперта просят отдать предпочтение одной из двух лотерей. Если с точки зрения эксперта лотереи равноценны, делается вывод о том, что вероятность события S1 равна 0,5. Если эксперт выбирает первую лотерею, то из корзины вынимается часть черных шаров и заменяется тем же количеством белых. Если предпочтение отдается второй лотерее, то часть белых шаров заменяется черными. В обоих случаях эксперту вновь предлагается поучаствовать в одной из двух лотерей. Изменяя соотношение шаров в гипотетической корзине, добиваются равноценности двух лотерей. Тогда искомая вероятность события S1 равна доле белых шаров в общем их количестве.

Некоторые рекомендации.

Известно, что субъективная вероятность, получаемая экспертным путем, существенно зависит от используемого метода. В частности, эксперт нередко склонен преувеличивать вероятность наименее вероятного события, а также недооценивать вероятность наиболее вероятного или преувеличивать дисперсию оцениваемой случайной величины. Рассмотрим несколько рекомендаций, выполнение которых позволит корректно проводить опрос эксперта с помощью различных методов:

  • необходимо обучить эксперта процедуре проведения экспертизы. Особенно это касается экспертов, имеющих слабую подготовку по теории вероятностей;

  • надо отдавать себе отчет в том, что сама процедура опроса эксперта является лишь одним звеном во всем процессе определения вероятностей. Предшествующие шаги по вычленению событий и выбору подходящего метода столь же важны. Нельзя пренебрегать также и последующим анализом полученных вероятностей с целью возможной их корректировки;

  • старайтесь применять объективную информацию о вероятностях событий, например данные о том, как такие события происходили в прошлом. Эта информация должна быть доведена до эксперта. Не забывайте также обрабатывать алгебраическим путем предыдущие оценки эксперта, чтобы сопоставить их с его новыми оценками;

  • для проверки надежности представленных данных рекомендуется обращаться к каким-либо другим методам нахождения субъективной вероятности или даже к модификации методов. Определенные различными методами вероятности необходимо показать эксперту для уточнения его оценок;

  • при выборе конкретного метода нужно учитывать опыт работы эксперта с числовыми показателями. В любом случае употребление знакомых эксперту понятий, фраз, вопросов и шкал облегчает возможности численного представления вероятности;

  • всегда, когда это возможно, старайтесь получать субъективную вероятность от нескольких экспертов, а затем некоторым образом агрегировать ее в одну;

  • сложные методы, требующие больших усилий от эксперта, например метод лотерей, лучше не применять, за исключением случаев, когда имеются серьезные аргументы в пользу выбора этих методов.

Выполнение этих рекомендаций позволяет существенно улучшить оценки вероятности.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6710
Авторов
на СтудИзбе
287
Средний доход
с одного платного файла
Обучение Подробнее