46407 (588399), страница 14
Текст из файла (страница 14)
Естественное боковое освещение должно составлять 2%, комбинированное искусственное освещение 400 лк при общем освещении 200 лк [3.3.]
-
Основные требования к искусственному освещению в производственном помещении.
К системам производственного освещения предъявляются следующие основные требования: [2.4., 2.5]
-
соответствие уровня освещённости рабочих мест характеру выполняемой работы
-
достаточно равномерное распределение яркости на рабочих поверхностях и в окружающем пространстве
-
отсутствие резких теней, прямой и отражённой блёскости (блёскость – повышенная яркость светящихся поверхностей, вызывающая ослеплённость);
-
оптимальная направленность излучаемого осветительными приборами светового потока.
-
Искусственное освещение в помещении и на рабочем месте создаёт хорошую видимость информации, машинописного и рукописного текста, при этом должна быть исключена отражённая блёскость.
В связи с этим предусматриваются мероприятия по ограничению слепящего воздействия оконных проёмов и прямое попадание солнечных лучей, а так же исключение на рабочих поверхностях ярких и тёмных пятен. Это достигается за счёт соответствующей ориентации оконных проёмов и рационального размещения рабочих мест.
Площадь оконных проёмов должна составлять не менее 25% площади пола. В помещении рекомендуется комбинированная система освещения с использованием люминесцентных ламп. Для проектирования местного освещения рекомендуются люминесцентные лампы, светильники которых установлены на столе или его вертикальной панели.
Светильники местного освещения должны иметь приспособления для ориентации в разных направлениях, устройствах для регулирования яркости и защитные решётки от ослепления и отражённого света.
-
Расчёт искусственного освещения
Имеется помещение инженера-разработчика размером:
длина 5 м;
ширина 4 м;
высота 3 м.
Потолок, пол и стены окрашены краской. Метод светового потока сводится к определению количества светильников по следующей формуле [3.5] :
N = (*Sп*К*Z) / (F* *n)
где Енорм - нормируемая минимальная освещённость на рабочем месте, лк;
Енорм= 400лк;
Sn - площадь производственного помещения, м2; S=20 м2;
К - коэффициент запаса светового потока, зависящий от степени загрязнения ламп, К=1.4,
Z – коэффициент минимальной освещенности, для люминесцентных ламп = z = 1.1
F – световой поток лампы, лм;
коэффициент использования светового потока ламп;
n – число ламп в светильнике, n = 2.4;
коэффициент затенения, = 0.9
Индекс помещения определяется по формуле:
А и В - длина и ширина помещения, м;
Нр - высота подвеса светильника над рабочей поверхностью, м.
После подстановки данных, находим индекс помещения:
i = (5*4) / (2*(5+4)) = 1.11
Коэффициенты отражения потолка и пола принимаем 0.75 и 0.50 соответственно. В зависимости от индекса помещения и коэффициентов отражения потолка и пола находим коэффициент использования светового потока по таблице [2.5]
Выбираем тип люминесцентных ламп низкого давления:
Лампа ЛТБ-20, световой поток 975 лм;
Лампа ЛТБ-30, световой поток 1720 лм;
Лампа ЛТБ-40, световой поток 3000 лм.
Подставив все значения, найдем количество светильников:
N = (400*20* 1.4*1.1)/(975*0.54*2.4*0.9)=10.8 = 11 шт;
N = (400*20* 1.4*1.1)/(1720*0.54*2,4*0.9)=6.1 = 6 шт;
N = (400*20*1.4*1.1)/(3000*0.54*2.4*0.9)=3.52 = 4 шт.
Из трех вариантов выбираем наиболее экономичный.
Для определения оптимального варианта надо рассчитать:
Руд = N*F/Sn
1. Руд = 11*975 / 20 = 536.25
2. Руд = 6*1720 / 20 = 516
3. Руд = 4*3000 / 20 = 600
Следовательно, наиболее экономичным будет вариант 2:
ЛТБ-30, и поэтому конструктивно выбираем его.
-
Рациональная планировка рабочих мест.
Для создания равномерной освещённости рабочих мест при общем освещении светильники с люминесцентными лампами встраиваются непосредственно в потолок помещения и располагается в равномерно-прямоугольном порядке. Наиболее желательное расположение светильников в непрерывный сплошной ряд вдоль длинной стороны помещения. Коэффициент наивыгоднейшего расположения светильников определяется по формуле [2.5]:
Lm = Lc / Hp ,
где Lm - коэффициент наивыгоднейшего расположения светильников, Lm =1.3;
Lс - расстояние между центрами светильников, м. Отсюда, Lс = l.3*2 = 2.6м.
Число рядов светильников определяем по формуле:
m=B/Lс, m=4/2.6=1.53=2.
Число светильников в ряду определяем по формуле:
M=N/m, М=6/2=3шт.
Суммарная длина светильников в ряду -1св М, учитывая, что
1св=[1л+(0.05-0.1)],
где 1св - длина светильника, м ;
1л - длина лампы, м.
1св = 0.909+0.9=1 м
Отсюда расстояние между светильниками в ряду определим из следующего соотношения:
A-1св*M
К
= , K = (5-1*3) / (3+1) = 0.5 м
M+1
Схема расположения светильников приведена на рис. 3.1.
рис. 3.1. Схема расположения светильников в помещении.
1 – оконный проем; 2- светильник; 3 – рабочий стол;
-
Утилизация и переработка ртути в люминесцентных лампах
Определив количество ламп в помещении и приняв срок службы одной лампы в среднем полгода, рассмотрим вопросы утилизации и переработки ртути в люминесцентных лампах.
Только в приборостроительной области количество используемых люминесцентных ламп исчисляется миллионами и через 1.5-2 года выбрасывается на свалки. [3.6].
В связи с этим большое практическое значение приобретает разработка и внедрение технологии извлечений дорогостоящих материалов из люминесцентных ламп после окончания срока их эксплуатации, в частности технология извлечения ртути.
Разработка технологии извлечения ртути является составной частью создания ресурсосберегающей технологии и природоохранительной системы.
Ртуть (Hg) имеет атомный вес 200,59. Она мало распространена в природе: ее содержание в земной коре составляет всего 0,000005 вес.%. Изредка ртуть встречается в самородном виде, вкрапленная в горные породы, но главным образом она находится в природе в виде сульфида ртути HgS , или киновари. Ртуть - единственный металл, жидкий при обыкновенной температуре, ее плотность составляет 13,546г/см3.
Ртуть является весьма дорогостоящим элементом. Добыча ее отличается трудоемкой технологией, которая приводит к нарушению земель по форме рельефа, т.е. к нарушению экологического равновесия.
Кроме того, не утилизированные люминесцентные лампы могут приводить к попаданию паров ртути в атмосферный воздух, через почву и воду,
Ртуть относится к веществам первого класса опасности, а ее величина ПДК- 0,0003 мг/м3 согласно СН 245-71 т.е. ртуть является чрезвычайно опасным веществом, оказывающее пагубное влияние на окружающую среду и живой мир,
Каждая лампа содержит 60,.. 120мг ртути. Примерно 100г ртути можно получить из 1000 ламп. Испарение такого количества ртути из разбитых ламп приводит к загрязнению 10 млн.м3 воздуха по ПДК.
Переработка использованных люминесцентных ламп исключает это воздействие.
Отделение по извлечению ртути из люминесцентных ламп может располагаться на территории предприятия по изготовлению ламп или на предприятии любой отрасли, где эксплуатируется большое количество люминесцентных ламп
В основу технологии извлечения ртути из люминесцентных ламп лежит способ демеркуризации.(рис. 3.2)
-
Дробление ламп
Погрузка боя в контейнер
Демеркуризация боя ламп в ванне с раствором в течении 1.5 часа
Установка контейнера на лотке для стока раствора
Транспортировка боя и арматуры в контейнерах к линии сортировки
-
Сбор раствора в
приемный бак
Перекачка раствора через фильтр с сульфоуглем типа КУ-2
Сжигание фильтра с сульфоуглем и образование металлической ртути
Сбор раствора для повторного приготовления
Сбор раствора в хозяйственно-фекальную канализацию
Рис 3.2 Схема демеркуризации люминесцентных ламп
Операция дробления ламп осуществляется в барабане, при вращении лопастей которого происходит измельчение стекла ламп.
Операция погрузки в контейнер осуществляется перемещением боя стекла ламп и арматуры по желобу.
Операция демеркуризации боя стекла ламп производят помещением контейнера в ванну с демеркуризационным раствором, где его выдерживают в течение 1,5 часов.
В табл 3.1 приведены типы, химический состав и краткая характеристика демеркуризационных растворов.
Таблица 3.1.
-
Химический состав и удельный расход демеркуризационных растворов
| Тип раствора | Состав и удельный расход на одну лампу демеркуризационного раствора | Состав и удельный расход на одну лампу демеркуризационного раствора |
| Раствор №1, Температура Раствора 280° | Перманганат калия Ктп04-0.00025г/л Соляная кислота НС1 -0,000125г/л Техническая вода-0,0375г/л | Ионы в перечете на металлическую ртуть: KMn04-0.5* 10г/л НС1-0.25* 10г/л |
| Раствор №2, Температура Раствора 28° | Хлорное железо Fed * 6Н20 - 0.0025г/л Карбонат кальция СаСОз-0,0015г/л Техническая вода -0,0375 г/л | Ионы в пересчете на металлическую ртуть: Fed * 6Н2О - 0.25 * 10г/л, СаСОз -3.75* 10г/л |
Операция установки контейнера на лотке преследует цель стока демеркуризационного раствора.
Операция сбора демеркуризационного раствора производится в приемный бак емкостью 1,6м3.
Операция перекачки отработанного раствора производится насосом в ионообменный фильтр с сульфоуглем типа ККУ-2, предварительно прошедшем регенерацию раствором СаСОз.
Операция выделения металлической ртути происходит за счет сжигания фильтра с сульфоуглем, которое производится один раз в два года.
Наряду с основными операциями имеются дополнительные. Отработанный демеркуризационный раствор может быть направлен в бак емкостью 1,6м3 для повторного приготовления демеркуризационного раствора или в системы хозяйственно-фекальной канализации предприятия.
Массу подвергают обработке (отделению металлической арматуры от боя стекла).
Бой стекла ламп направляют для переработки на предприятие по производству ламп или на предприятие стеклянных изделий.
Металлическую арматуру направляют для переплава на машиностроительные и металлургические предприятия.
Общее количество ртути, которое может быть извлечено при демеркуризации люминесцентных ламп определяют по формуле:
М = m * N,















