183957 (584873)
Текст из файла
Размещено на http://www.allbest.ru/
5 | 2 | 3 | 1 | 6 | 4 | 8 | 9 | 5 | 7 |
4 | 7 | 8 | 2 | 9 | 10 | 4 | 5 | 3 | 2 |
9 | 7 | 8 | 6 | 5 | 4 | 3 | 5 | 2 | 1 |
2 | 3 | 4 | 1 | 5 | 6 | 7 | 5 | 3 | 10 |
-
Вычислить критерий хи-квадрат и сделать вывод о нормальности данного распределения.
-
Построить график эмпирического распределения.
Критерий Пирсона
-
Наблюдаемый критерий Пирсона вычисляется по следующей формуле:
критерий пирсон колмогоров распределение частота
,
где - наблюдаемая частота;
- теоретическая частота.
Массив данных о значениях случайной величины X, как элементов выборки представим в таблице 1.1 в ячейках В2:К5.
Таблица
A | B | C | D | E | F | G | H | I | J | K | |
1 | |||||||||||
2 |
| 5 | 2 | 3 | 1 | 6 | 4 | 8 | 9 | 5 | 7 |
3 |
| 4 | 7 | 8 | 2 | 9 | 10 | 4 | 5 | 3 | 2 |
4 |
| 9 | 7 | 8 | 6 | 5 | 4 | 3 | 5 | 2 | 1 |
5 |
| 2 | 3 | 4 | 1 | 5 | 6 | 7 | 5 | 3 | 10 |
6 |
|
|
|
|
|
|
|
|
|
|
|
7 | n= | 40 |
| k= | 6,31884 |
|
|
|
|
|
|
8 | 10 |
| h= | 1,42431 |
|
|
|
|
|
| |
9 |
| 1 |
|
|
|
|
|
|
|
|
|
-
Разобьем исходные данные по интервалам. Количество интервалов вычислим по формуле
, где n – объем выборки.
Объем выборки определим с помощью функции СЧЕТ . Для этого установим курсор в ячейку В7, щелкнем мышкой над кнопкой , которая находится на панели инструментов. Появится окно «Мастер функций – шаг 1 из 2» , в котором в категории «Статистические» выбираем функцию СЧЕТ. Затем мышкой выполним команду ОК. В появившемся окне «Аргументы функции» поставим курсор в строку ввода «Значение 1» и мышкой выделим массив В2:К5, щелкнем мышкой ОК. В ячейке В7 появится значение объема данных, число 40.
Введем в ячейку Е7 формулу: =1+3,32*Log(В7),в ячейке Е7 появится число 6,31884.
Далее вычислим шаг интервалов, используя формулу , где
- максимальное значение варианты из массива данных;
– минимальное значение варианты; k – количество интервалов.
Выделим пустую ячейку В8 и вызовем окно «Мастер функций – шаг 1 из 2» , в котором инициируем функцию «МАКС» , введем в строку ввода блок ячеек В2:К5. В ячейке В8 появится максимальное значение данных, число 10.Выделим пустую ячейку В9 и вызовем окно «Мастер функций – шаг 1 из 2» , в котором инициируем функцию «МИН» , введем в строку ввода блок ячеек В2:К5. В ячейке В9 появится максимальное значение данных, число 1.
Теперь введем в ячейку Е8 формулу: =(В8-В9)/Е7. Получим значение шага h=1,42431. Округлим его, получаем h=1,5.
Таким образом, имеем шаг h=1,5, количество интервалов округлим до 7, k=7. Вычислим теоретические частоты по интервалам . Для этого построим новую расчетную таблицу 1.2. Значения частот определяем с использованием функции ЧАСТОТА( ).
Введем в ячейку В11 заголовок для левого конца интервала , в ячейку С11 – заголовок правого конца интервала
. Далее вводим значения в столбцы В12:В18 и С12:С18.
Таблица
A | B | C | D | E | F | G | H | I | |
10 | |||||||||
| |||||||||
| 1 | 2,5 | 3 | 1,75 | 5,25 | 59,7417 | -1,4232 | ||
13 | 2,5 | 4 | 5 | 3,25 | 16,25 | 43,882 | -1,4232 | -0,8482 | |
14 | 4 | 5,5 | 10 | 4,75 | 47,5 | 21,3891 | -0,8482 | -0,2731 | |
15 | 5,5 | 7 | 7 | 6,25 | 43,75 | 0,00984 | -0,2731 | 0,30188 | |
16 | 7 | 8,5 | 7 | 7,75 | 54,25 | 16,5473 | 0,30188 | 0,8769 | |
17 | 8,5 | 10 | 3 | 9,25 | 27,75 | 27,6792 | 0,8769 | 1,45192 | |
| 10 | 11,5 | 5 | 10,75 | 53,75 | 102,945 | 1,45192 | ||
19 | сумма | 40 | 248,5 | 272,194 | |||||
| = | 6,2125 | 6,80484 | ||||||
| 2,60861 |
-
1) Выделим мышкой пустой столбец D12:D18. Щелкнем мышкой над кнопкой
функцию ЧАСТОТА. Появится окно «Аргументы и функции» . Вводим в строку массив данных блок В2:К5. Затем переводим курсор в строку массив интервалов. Т.е. выделяем столбец В12:В18 и нажимаем последовательно на клавиатуре три кнопки Ctrl+Shift+Enter.
2) Столбец Е12:Е18 заполним средними значениями каждого интервала. В столбце F12:F18 вычислим средние значения для всего массива данных . Для этого в ячейку F12 вводим формулу =D12*E12 и протягиваем мышкой значение этой ячейки до конца таблицы. В ячейке F19 вычисляем сумму, а в ячейке F20 – среднее значение по формуле =F19/D19. =6,2125
3) Вычисляем среднее квадратическое отклонение по формуле
.
Вводим с клавиатуры в ячейку G12 формулу =(E12-59,875)^2*D12 и протягиваем ячейку до ячейки G18. Далее вычисляем в G19 сумму, в ячейке G20 – среднее значение, разделив сумму на 40 и в ячейке G21 извлекаем корень квадратный по формуле =корень(G20). 2,60861.
-
Вычислим безразмерные аргументы
для левых концов интервала и
для правых концов интервала по формуле
.
В ячейку H12 вводим формулу =(В12-6,2125)/ 2,60861 и протягиваем ее до конца столбца, т.е. заполняем нижние значения соответствующими вычислениями. Аналогично вычисляем величины формулой: =(C12-6,2125)/ 2,60861.
Далее вычисляем значения функций Лапласа F( и F(
по таблице и результаты помещаем в новую расчетную таблицу 1.3 в ячейки В24:В30 и С24:С30.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.