183907 (584854), страница 2
Текст из файла (страница 2)
Так как поставки от поставщика всем потребителям не могут быть больше его возможностей, то выполняются условия:
х11 + х12 + х13 = 400
х21 + х22 + х23 = 500 (2)
х31 + х32 + х33 = 800
х41 + х42 + х43 = 500
Затраты на транспортировку составят
F(X) = х11 + 4х12 + 3х13 +
+ 7х21 + х22 + 5x23 +
+ 4х31 + 8х32 + 3х33 +
+ 6х41 + 2х42 + 8х43 .
Требуется найти неотрицательное решение системы уравнений (1) – (2), на котором целевая функция затрат F(X) принимает минимальное значение.
Задание 3.
Начальный план перевозок находим методом минимальной стоимости:
Заполняем клетку (1; 1) х11 = min {700, 400} = 400, от поставщика 1 вывезено все, в строке 1 больше поставок нет. Заполняем клетку (2; 2) х22 = min {800, 500} = 500, от поставщика 2 вывезено все, в строке 2 больше поставок нет. Клетка (4; 2) х42 = min {800 - 500, 500} = 300, потребителю 2 все завезено, в столбец 2 больше поставок нет. Клетка (3; 3) х33 = min {700, 800} = 700, потребителю 3 все завезено, в столбец 3 больше поставок нет. Далее клетка (3; 1) х31 = 100. Клетка (4; 1) х41 = 200. Все клетки, в которые даны поставки, считаем занятыми, остальные – свободными. Первоначальный план перевозок задается таблицей 1.
Таблица 1.
Мощности поставщиков | Мощности потребителей | ui | |||
700 | 800 | 700 | |||
400 | 1 400 | 4 | 3 | 0 | |
500 | 7 | 1 500 | 5 | -4 | |
800 | 4 100 | 8 | 3 700 | -3 | |
500 | 6 200 | 2 300 | 8 | -5 | |
vj | 1 | -3 | 0 |
Исследуем этот план перевозок на оптимальность методом потенциалов. Потенциалы для занятых клеток удовлетворяют уравнениям: vj = cij + ui.
Пусть u1 = 0; по клетке (1; 1) находим v1 = 1; по клетке (3; 1) находим u3 = -3; по клетке (4; 1) находим u4 = -5; по клетке (4; 2) находим v2 = -3; по клетке (3; 3) находим v3 = -0; по клетке (2; 2) находим u2 = -4.
Для всех клеток матрицы перевозок найдем оценки клеток dij = (ui + cij) - vj :
Среди оценок нет отрицательных, следовательно план перевозок Х0 (таблица 1) оптимальный.
Так как среди оценок свободных клеток есть нулевые (клетка (1; 3)), то оптимальный план перевозок не единственный.
Общие затраты на перевозки
F(X1) = 1*400 + 1*500 + 4*100 + 3*700 + 6*200 + 2*300 = 5200 ден. единиц будут минимальными при:
x11 = 400, x22 = 500, x31 = 100, х33 = 700, x41 = 200, x42 = 300, остальные xij = 0.
По оптимальному плану перевозок следует перевезти картофеля:
из первого района в первое хранилище - 400 т;
из второго района во второе хранилище - 500 т;
из третьего района в первое хранилище - 100 т,
в третье хранилище - 700 т;
из четвертого района в первое хранилище - 200 т,
во второе хранилище - 300 т.
Задача 4
В таблице приведены годовые данные о трудоемкости производства I т цемента (нормо-смен) (N —последняя цифра зачетной книжки студента):
Текущий номер года (t) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Трудоемкость 1 т цемента (yi) | 7,9+0,N | 8,3+0,N | 7,5+0,N | 6,9+0,N | 7,2+0,N | 6,5+0,N | 5,8+0,N | 4,9+0,N | 5,1+0,N | 4,4+0,N |
Задание 1. Сгладить временной ряд методом простой скользящей средней, выбрав длину интервала сглаживания m = 3; результаты отразить на графике.
Задание 2. Определить наличие тренда во временном ряду методом Фостера - Стьюарта. Табличные значения статистики Стьюдента t принять равными при уровне значимости = 0.05 t = 2,23 , а при = 0,30 - t = 1,09; другие необходимые табличные данные приведены в таблице 4.5 учебника на с.153 (описание метода Фостера - Стьюарта см. учебник с. 151- 153).
Задание 3. Для исходного временного ряда построить линейную трендовую модель , определив ее параметры на основе метода наименьших квадратов (соответствующую систему нормальных уравнений см. в учебнике на с. 196 формула (5.5)).
Задание 4. Оценить адекватность построенной модели на основе исследования
а) близости математического ожидания остаточной компоненты (ряда остатков) нулю; критические значения r-критерия принять равным тому числу, как указанно в задании 2;
б) случайности отклонений остаточной компоненты по критерию пиков (поворотных точек); Расчеты выполнить на основе соотношения 5.9. учебника на с. 200;
в) независимости уровней ряда остатков (отсутствие автокорреляции) на основе критерия Дарбина — Уотсона (см. учебник с. 203— 204), используя в качестве критических значений dl = 1.08 и d2 = 1,36; если критерий Дарбина — Уотсона ответа не дает, исследование независимости провести по первому коэффициенту автокорреляции:
,
где i -- уровни остаточной компоненты;
Модуль первого коэффициента автокорреляции сравнить с критическим уровнем этого коэффициента, значение которого принять равным 0,36;
г) нормальности закона распределения уровней остаточной компоненты на основе RS-критерия;
В качестве критических значений принять интервал от 2,7 до 3,7 (см. учебник, стр. 201—-202).
Задание 5. Оценить точность построенной трендовой линейной модели, используя показатели среднего квадратического отклонения от линии тренда (формула (5,17) учебника на с. 210, k = 1) и средней относительной ошибки аппроксимации (формула (5.14) учебника на с. 204).
Задание 6. Построить точечный и интервальный прогноз трудоемкости производства 1 т цемента на два шага вперед (формула (5.18) учебника на с. 210). Результаты моделирования и прогнозирования отразить на графике.
Все промежуточные результаты вычислений представить в таблицах, вычисления провести с двумя десятичными знаками в дробной части.
Вариант 3. Условия при N = 3
Текущий номер года (t) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Трудоемкость 1 т цемента (yi) | 8,2 | 8,6 | 7,8 | 7,2 | 7,5 | 6,8 | 6,1 | 5,2 | 5,4 | 4,7 |
Решение.
Задание 1. Сглаживание ряда Y(t) произведем по простой скользящей средней
Результаты в таблице 1.
Таблица 1. | |||
Сглаживание ряда динамики | |||
t | Факт Y(t) | Скользящая сумма | Скользящее среднее |
1 | 8,2 | - | - |
2 | 8,6 | 24,6 | 8,20 |
3 | 7,8 | 23,6 | 7,87 |
4 | 7,2 | 22,5 | 7,50 |
5 | 7,5 | 21,5 | 7,17 |
6 | 6,8 | 20,4 | 6,80 |
7 | 6,1 | 18,1 | 6,03 |
8 | 5,2 | 16,7 | 5,57 |
9 | 5,4 | 15,3 | 5,10 |
10 | 4,7 | - | - |
Задание 2.
Этап 1. Строим две числовые последовательности kt и lt
t | kt | lt |
2 | 1 | 0 |
3 | 0 | 1 |
4 | 0 | 1 |
5 | 0 | 0 |
6 | 0 | 1 |
7 | 0 | 1 |
8 | 0 | 1 |
9 | 0 | 0 |
10 | 0 | 1 |
Этап 2. Находим величины
7;
1 – 6 = -5.
Этап 3. Для n = 10 выпишем табличные значения = 3,858; 1 = 1,288; 2 = 1,964.
Вычисляем
2,44;
2,55.
Этап 4.
Так как расчетные значения ts = 2,44 и td = 2,55 больше табличного значения ta = 2,23, то в данном временном ряду присутствуют тренд и тенденция в дисперсии ряда.
Из таблицы 1 видно, что ряд Y(t) имеет тенденцию к снижению.
Задание 3. Линейную трендовую модель ищем в виде . Параметры модели а0, а1 найдем, решив систему уравнений
.