183855 (584833)
Текст из файла
Задание 1
Приведены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).
Требуется:
1) Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания 1=0,3; 2=0,6; 3=0,3.
2) Оценить точность построенной модели с использованием средней относительной ошибки аппроксимации.
3) Оценить адекватность построенной модели на основе исследования:
-
случайности остаточной компоненты по критерию пиков;
-
независимости уровней ряда остатков по d-критерию (критические значения d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом значении r1 = 0,32;
-
нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.
4) Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.
5) Отразить на графике фактические, расчетные и прогнозные данные.
Таблица 1
Поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года
t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 13 | 14 | 15 | 16 |
Y(t) | 28 | 36 | 43 | 28 | 31 | 40 | 49 | 30 | 34 | 44 | 52 | 33 | 39 | 48 | 58 | 36 |
Решение
Будем считать, что зависимость между компонентами тренд-сезонный временный ряд мультипликативная. Мультипликативная модель Хольта-Уинтерса с линейным ростом имеет следующий вид:
, (1)
где k – период упреждения;
Yр(t) — расчетное значение экономического показателя для t-гo периода;
a(t), b(t) и F(t) - коэффициенты модели; они адаптируются, уточняются по мере перехода от членов ряда с номером t-1 к t;
F(t+k-L) - значение коэффициента сезонности того периода, для которого рассчитывается экономический показатель;
L - период сезонности (для квартальных данных L=4, для месячных – L=12).
Таким образом, если по формуле 1 рассчитывается значение экономического показателя, например за второй квартал, то F(t+k-L) как раз будет коэффициентом сезонности второго квартала предыдущего года.
Уточнение (адаптация к новому значению параметра времени t) коэффициентов модели производится с помощью формул:
; (2)
; (3)
. (4)
Параметры сглаживания 1, 2 и 3 подбирают путем перебора с таким расчетом, чтобы расчетные данные наилучшим образом соответствовали фактическим (т.е. чтобы обеспечить удовлетворительную адекватность и точность модели).
Из формул 1 - 4 видно, что для расчета а(1) и b(1) необходимо оценить значения этих коэффициентов для предыдущего период времени (т.е. для t=1-1=0). Значения а(0) и b(0) имеют смысл этих же коэффициентов для четвертого квартала года, предшествующего первому году, для которого имеются данные в табл. 1.
Для оценки начальных значений а(0) и b(0) применим линейную модель к первым 8 значениям Y(t) из табл. 1. Линейная модель имеет вид:
. (5)
Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения а(0) и b(0) по формулам 6 - 9:
; (6)
; (7)
; (8)
. (9)
Применяя линейную модель к первым 8 значениям ряда из таблицы 1 (т.е. к данным за первые 2 года), находим значения а(0) и b(0). Составим вспомогательную таблицу для определения параметров линейной модели:
Таблица 2
t | Y(t) | t-tcp | Y-Ycp | (t-tcp)2 | (Y-Ycp)(t-tcp) | |
1 | 28 | -3,5 | -7,625 | 12,25 | 26,6875 | |
2 | 36 | -2,5 | 0,375 | 6,25 | -0,9375 | |
3 | 43 | -1,5 | 7,375 | 2,25 | -11,0625 | |
4 | 28 | -0,5 | -7,625 | 0,25 | 3,8125 | |
5 | 31 | 0,5 | -4,625 | 0,25 | -2,3125 | |
6 | 40 | 1,5 | 4,375 | 2,25 | 6,5625 | |
7 | 49 | 2,5 | 13,375 | 6,25 | 33,4375 | |
8 | 30 | 3,5 | -5,625 | 12,25 | -19,6875 | |
36 | 285 | 0 | 0 | 42 | 36,5 |
Уравнение (5) с учетом полученных коэффициентов имеет вид: Yp(t)=31,714+0,869·t. Из этого уравнения находим расчетные значения Yр(t) и сопоставляем их с фактическими значениями (табл. 3). Такое сопоставление позволяет оценить приближенные значения коэффициентов сезонности I-IV кварталов F(-3), F(-2), F(-1) и F(0) для года, предшествующего первому году, по которому имеются данные в табл. 1. Эти значения необходимы для расчета коэффициентов сезонности первого года F(1), F(2), F(3), F(4) и других параметров модели Хольта-Уинтерса по формулам 1 - 4.
Таблица 3
Сопоставление фактических данных Y(t) и рассчитанных по линейной модели значений Yp(t)
t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Y(t) | 28 | 36 | 43 | 28 | 31 | 40 | 49 | 30 |
Yp(t) | 32,583 | 33,452 | 34,321 | 35,190 | 306,060 | 36,929 | 37,798 | 38,667 |
Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели. Поэтому в качестве оценки коэффициента сезонности I квартала F(-3) может служить отношение фактических и расчетных значений Y(t) I квартала первого года, равное Y(1)/Yр(1), и такое же отношение для I квартала второго года (т.е. за V квартал t=5) Y(5)/Yр(5). Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.
F(-3) = [ Y(1) / Yp(1) + Y(5) / Yp(5) ] / 2=[ 28 / 32,583 + 31 / 36,060 ] / 2 = 0,8595.
Аналогично находим оценки коэффициента сезонности для II, III и IV кварталов:
F(-2) = [Y(2) / Yp(2) + Y(6) / Yp(6) ] / 2 = 1,0797;
F(-1) = [Y(3) / Yp(3) + Y(7) / Yp(7) ] / 2 = 1,2746;
F(0) = [Y(4) / Yp(4) + Y(8) / Yp(8) ] / 2 = 0,7858.
Оценив значения а(0), b(0), а также F(-3), F(-2), F(-1) и F(0), можно перейти к построению адаптивной мультипликативной модели Хольта-Уинтерса с помощью формул 1 - 4.
Из условия задачи имеем параметры сглаживания 1=0,3; 2=0,6; 3=0,3. Рассчитаем значения Yp(t), a(t), b(t) и F(t) для t=l.
Из уравнения 1, полагая что t=0, k=1, находим Yр(1):
Из уравнений 2 - 4, полагая что t=1, находим:
;
;
.
Аналогично рассчитаем значения Yp(t), a(t), b(t) и F(t) для t=2:
;
;
;
для t=3:
;
;
;
для t=4:
;
;
;
для t=5:
Обратим внимание на то, что здесь и в дальнейшем используются коэффициенты сезонности F(t-L), уточненные в предыдущем году (L=4):
;
;
;
Продолжая аналогично для, t = 6,7,8,…,16 строят модель Хольта-Уинтерса (табл. 4). Максимальное значение t, для которого можно находить коэффициенты модели, равно количеству имеющихся данных по экономическому показателю Y(t). В нашем примере данные приведены за 4 года, то есть за 16 кваралов. Максимальное значение t равно 16.
Таблица 4
Модель Хольта-Уинтерса
t | Y(t) | a(t) | b(t) | F(t) | Yp(t) | Абс.погр., E(t) | Отн.погр., % |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 | 31,71 | 0,87 | 0,7858 | ||||
1 | 28,0 | 32,58 | 0,87 | 0,8594 | 28,01 | -0,01 | 0,02 |
2 | 36,0 | 33,42 | 0,86 | 1,0782 | 36,11 | -0,11 | 0,32 |
3 | 43,0 | 34,11 | 0,81 | 1,2661 | 43,69 | -0,69 | 1,60 |
4 | 28,0 | 35,14 | 0,87 | 0,7924 | 27,44 | 0,56 | 1,99 |
5 | 31,0 | 36,03 | 0,88 | 0,8600 | 30,95 | 0,05 | 0,16 |
6 | 40,0 | 36,97 | 0,90 | 1,0805 | 39,80 | 0,20 | 0,51 |
7 | 49,0 | 38,11 | 0,97 | 1,2778 | 47,94 | 1,06 | 2,17 |
8 | 30,0 | 38,72 | 0,86 | 19 | 30,97 | -0,97 | 3,24 |
9 | 34,0 | 39,57 | 0,86 | 0,8596 | 34,04 | -0,04 | 0,11 |
10 | 44,0 | 40,51 | 0,88 | 1,0839 | 43,68 | 0,32 | 0,73 |
11 | 52,0 | 41,19 | 0,82 | 1,2687 | 52,90 | -0,90 | 1,73 |
12 | 33,0 | 42,07 | 0,84 | 0,7834 | 32,84 | 0,16 | 0,47 |
13 | 39,0 | 43,64 | 1,06 | 0,8800 | 36,88 | 2,12 | 5,43 |
14 | 48,0 | 44,58 | 1,02 | 1,0796 | 48,45 | -0,45 | 0,95 |
15 | 58,0 | 45,64 | 1,03 | 1,2700 | 57,85 | 0,15 | 0,25 |
16 | 36,0 | 46,45 | 0,97 | 0,7783 | 36,56 | -0,56 | 1,56 |
Проверка качества модели
Для того чтобы модель была качественной уровни, остаточного ряда E(t) (разности Y(t)-Yp(t) между фактическими и расчетными значениями экономического показателя) должны удовлетворять определенным условиям (точности и адекватности). Для проверки выполнения этих условий составим таблицу 5.
Проверка точности модели
Будем считать, что условие точности выполнено, если относительная погрешность (абсолютное значение отклонения abs{E(t)}, поделенное на фактическое значение Y(t) и выраженное в процентах 100%·abs{E(t)}/Y(t)) в среднем не превышает 5%. Суммарное значение относительных погрешностей (см. гр. 8 табл. 4) составляет 21,25, что дает среднюю величину 21,25/16 = 1,33%.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.