183650 (584748), страница 3
Текст из файла (страница 3)
.
Параметры уравнения можно найти из решения системы уравнений:
Или, перейдя к уравнению в стандартизированном масштабе:
, где
– стандартизированные переменные,
– стандартизированные коэффициенты:
Коэффициенты
определяются из системы уравнений:
,
;
;
,
;
,
;
,
;
,
;
,
;
.
Стандартизированная форма уравнения регрессии имеет вид:
.
Естественная форма уравнения регрессии имеет вид:
.
Для выяснения относительной силы влияния факторов на результативный признак рассчитываются средние коэффициенты эластичности:
,
,
.
Следовательно, при увеличении оборота капитала (x1) на 1% чистый доход (y) уменьшается на 0,14% от своего среднего уровня. При повышении использованного капитала на 1% чистый доход повышается на 0,73% от своего среднего уровня.
Линейные коэффициенты частной корреляции для уравнения определяются следующим образом:
,
.
Линейный коэффициент множественной корреляции рассчитывается по формуле
.
Коэффициент множественной детерминации
.
,
где
- объем выборки,
- число факторов модели.
В нашем случае
.
Так как
, то
и потому уравнение незначимо.
Выясним статистическую значимость каждого фактора в уравнении множественной регрессии.
Для этого рассчитаем частные
-статистики.
.
Так как
, то
и следует вывод о нецелесообразности включения в модель фактора
после фактора
.
.
Так как
, то следует вывод о нецелесообразности включения в модель фактора
после фактора
.
Результаты расчетов позволяют сделать вывод :
-
о незначимости фактора
и нецелесообразности включения его в уравнение регрессии; -
о незначимости фактора
и нецелесообразности включения его в уравнение регрессии.
Задание 3
1. Используя необходимое и достаточное условие идентификации, определить, идентифицировано ли каждое уравнение модели.
2. Определите тип модели.
3. Определите метод оценки параметров модели.
4. Опишите последовательность действий при использовании указанного метода.
5. Результаты оформите в виде пояснительной записки.
Модель денежного и товарного рынков:
Rt = a1+b12Yt+b14Mt+1,
Yt = a2+b21Rt+ b23It+ b25Gt+2,
It = a3+b31Rt+3,
где
R – процентные ставки;
Y – реальный ВВП;
M – денежная масса;
I – внутренние инвестиции;
G – реальные государственные расходы.
Решение
1. Модель имеет три эндогенные (RtYtIt) и две экзогенные переменные (MtGt).
Проверим необходимое условие идентификации:
1-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.
2-е уравнение: D=1, H=1, D+1=2 - уравнение сверхидентифицировано.
3-е уравнение: D=1, H=2, D+1=H - уравнение идентифицировано.
Следовательно, необходимое условие идентифицируемости выполнено.
Проверим достаточное условие:
В первом уравнении нет переменных It, Gt
Строим матрицу:
| It | Gt | |
| 2 ур. | b23 | b23 |
| 3 ур. | 0 | 0 |
det M = det
, rank M =2.
Во втором уравнении нет переменных Mt
det M 0
В третьем уравнении нет переменных Yt, Mt, Gt
Строим матрицу:
det M
/
Следовательно, достаточное условие идентифицируемости выполнено.
Система точно идентифицируема.
2. Найдем структурные коэффициенты модели.
Для этого:
Запишем систему в матричной форме, перенеся все эндогенные переменные в левые части системы:
Rt-b12Yt=a1+b12Mt
Yt-b21Rt-b23It=a2+b25Gt
It-b31Rt=a3
откуда
, и
,
,
,
.
Решаем систему относительно
:
. Найдем
, где
–
алгебраические дополнения соответствующих элементов матрицы
,
– минор, т.е. определитель, полученный из матрицы
вычеркиванием i-й строки и j-го столбца.
,
,
,
.
Поэтому
В данном случае эти коэффициенты можно найти значительно проще. Находим
из второго уравнения приведенной системы и подставим его в первое уравнение этой системы. Тогда первое уравнение системы примет вид:
, откуда
,
. Из третьего уравнения системы находим
и подставляем во второе уравнение системы, получим:
, решая его совместно с уравнением
и, исключая
, получим
. Сравнивая это уравнение со вторым уравнением системы получим
. Выражая
из второго уравнения, и подставляя в третье системы (3.2), получим
. Сравнивая это уравнение с третьим уравнением системы, получим
.
Задание 4
Имеются данные за пятнадцать дней по количеству пациентов клиники, прошедших через соответствующие отделения в течение дня. Данные приведены в табл. 6.
Таблица 6
| День | Глазное отделение |
| 1 | 30 |
| 2 | 22 |
| 3 | 19 |
| 4 | 28 |
| 5 | 24 |
| 6 | 18 |
| 7 | 35 |
| 8 | 29 |
| 9 | 40 |
| 10 | 34 |
| 11 | 31 |
| 12 | 29 |
| 13 | 35 |
| 14 | 23 |
| 15 | 27 |
Требуется:
1. Определить коэффициенты автокорреляции уровней ряда первого и второго порядка.
2. Обосновать выбор уравнения тренда и определите его параметры.
3. Сделать выводы.
4. Результаты оформить в виде пояснительной записки.
Решение
Определим коэффициент корреляции между рядами
и
. Ррасчеты приведены в таблице 7:
| год | | | | | | | | | | | | | | |
| 1 | 30 | - | - | - | - | - | - | - | - | - | - | - | - | |
| 2 | 22 | 30 | - | -6,14 | 1,64 | 37,73 | 2,70 | - | - | - | - | 10,09 | - | |
| 3 | 19 | 22 | 30 | -9,14 | -6,36 | 83,59 | 40,41 | -9,36 | 1,23 | 87,56 | 1,51 | 58,12 | 11,52 | |
| 4 | 28 | 19 | 22 | -0,14 | -9,36 | 0,02 | 87,56 | -0,36 | -6,77 | 0,13 | 45,82 | 1,34 | 2,42 | |
| 5 | 24 | 28 | 19 | -4,14 | -0,36 | 17,16 | 0,13 | -4,36 | -9,77 | 18,98 | 95,44 | 1,48 | 42,57 | |
| 6 | 18 | 24 | 28 | -10,14 | -4,36 | 102,88 | 18,98 | -10,36 | -0,77 | 107,27 | 0,59 | 44,19 | 7,97 | |
| 7 | 35 | 18 | 24 | 6,86 | -10,36 | 47,02 | 107,27 | 6,64 | -4,77 | 44,13 | 22,75 | 71,02 | 31,68 | |
| 8 | 29 | 35 | 18 | 0,86 | 6,64 | 0,73 | 44,13 | 0,64 | -10,77 | 0,41 | 115,98 | 5,69 | 6,92 | |
| 9 | 40 | 29 | 35 | 11,86 | 0,64 | 140,59 | 0,41 | 11,64 | 6,23 | 135,56 | 38,82 | 7,62 | 72,54 | |
| 10 | 34 | 40 | 29 | 5,86 | 11,64 | 34,31 | 135,56 | 5,64 | 0,23 | 31,84 | 0,05 | 68,19 | 1,30 | |
| 11 | 31 | 34 | 40 | 2,86 | 5,64 | 8,16 | 31,84 | 2,64 | 11,23 | 6,98 | 126,13 | 16,12 | 29,68 | |
| 12 | 29 | 31 | 34 | 0,86 | 2,64 | 0,73 | 6,98 | 0,64 | 5,23 | 0,41 | 27,36 | 2,27 | 3,36 | |
| 13 | 35 | 29 | 31 | 6,86 | 0,64 | 47,02 | 0,41 | 6,64 | 2,23 | 44,13 | 4,98 | 4,41 | 14,82 | |
| 14 | 23 | 35 | 29 | -5,14 | 6,64 | 26,45 | 44,13 | -5,36 | 0,23 | 28,70 | 0,05 | 34,16 | 1,24 | |
| 15 | 27 | 23 | 35 | -1,14 | -5,36 | 1,31 | 28,70 | -1,36 | 6,23 | 1,84 | 38,82 | 6,12 | 8,46 | |
| | 120 | - | - | - | 0,00 | 0,00 | 547,71 | 549,21 | 3,36 | 0,00 | 507,94 | 518,31 | 330,84 | 234,47 |
| Средн. | 8 | 28,14 28,36 | 28,36 | 28,77 |
Результат говорит о заметной зависимости между показателями и наличии во временном ряде линейной тенденции.















