183619 (584739)
Текст из файла
М
ИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Реферат
по дисциплине: Методы и модели в экономике и менеджменте.
на тему: «Применение методов линейного программирования для оптимизации стоимости перевозок»
Воронеж 2010
Под названием “транспортная задача” объединяется широкий круг задач с единой математической моделью. Данные задачи относятся к задачам линейного программирования и могут быть решены симплексным методом. Однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Эти методы, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его, получить оптимальное решение.
В общей постановке транспортная задача состоит в отыскании оптимального плана перевозок некоторого однородного груза с
баз
потребителям
.
Различают два типа транспортных задач: но критерию стоимости (план перевозок оптимален, если достигнут минимум затрат на его реализацию) и по критерию времени (план оптимален, если на его реализацию затрачивается минимум времени).
О
(3. )
бозначим количество груза, имеющегося на каждой из
баз (запасы), соответственно
,а общее количество имеющегося в наличии груза–
:
;
з
(3. )
аказы каждого из потребителей (потребности) обозначим соответственно
, а общее количество потребностей –
:
,
Т
(3. )
огда при условии
м
(3. )
ы имеем закрытую модель, а при условии
– открытую модель транспортной задачи.
Очевидно, в случае закрытой модели весь имеющийся в наличии груз развозится полностью, и все потребности заказчиков полностью удовлетворены; в случае же открытой модели либо все заказчики удовлетворены и при этом на некоторых базах остаются излишки груза
, либо весь груз оказывается израсходованным, хотя потребности полностью не удовлетворены
.
Так же существуют одноэтапные модели задач, где перевозка осуществляется напрямую от, например, базы или завода изготовителя к потребителю, и двухэтапные, где между ними имеется “перевалочный пункт”, например – склад.
План перевозок с указанием запасов и потребностей удобно записывать в виде следующей таблицы, называемой таблицей перевозок (Таблица 3. ):
Таблица 3. - План перевозок с указанием запасов и потребностей
| Пункты Отправления | Пункты назначения | Запасы | ||||
|
|
| … |
| |||
|
|
|
| … |
|
| |
|
|
|
| … |
|
| |
| … | … | … | … | … | … | |
|
|
|
| … |
|
| |
| Потребности |
|
| … |
|
или
| |
Условие
или
означает, с какой задачей мы имеем дело, с закрытой моделью или открытой моделью транспортной задачи. Переменное
означает количество груза, перевозимого с базы
потребителю
: совокупность этих величин образует матрицу (матрицу перевозок).
Очевидно, переменные
должны удовлетворять условиям:
(3. )
Система (3. ) содержит
уравнений с
неизвестными. Её особенность состоит в том, что коэффициенты при неизвестных всюду равны единице. Кроме того, все уравнения системы (3. ) могут быть разделены на две группы: первая группа из т первых уравнений (“горизонтальные” уравнения) и вторая группа из п остальных уравнений (“вертикальные” уравнения). В каждом из горизонтальных уравнений содержатся неизвестные с одним и тем же первым индексом (они образуют одну строку матрицы перевозок), в каждом из вертикальных уравнений содержатся неизвестные с одним и тем же вторым индексом (они образуют один столбец матрицы перевозок). Таким образом, каждая неизвестная встречается в системе (3. ) дважды: в одном и только одном горизонтальном и в одном и только одном вертикальном уравнениях.
Такая структура системы (3. ) позволяет легко установить ее ранг. Действительно, покажем, что совокупность неизвестных, образующих первую строку и первый столбец матрицы перевозок, можно принять в качестве базиса. При таком выборе базиса, по крайней мере, один из двух их индексов равен единице, а, следовательно, свободные неизвестные определяются условием
,
.Перепишем систему (3. ) в виде
(3. )
где символы
и
означают суммирование по соответствующему индексу. Так, например,
При этом легко заметить, что под символами такого суммирования объединяются только свободные неизвестные (здесь
,
).
В рассматриваемой нами системе только два уравнения, а именно первое горизонтальное и первое вертикальное, содержат более одного неизвестного из числа выбранных нами для построения базиса. Исключив из первого горизонтального уравнения базисные неизвестные
с помощью вертикальных уравнений, мы получаем уравнение
или короче
(3. )
где символ
означает сумму всех свободных неизвестных. Аналогично, исключив из первого вертикального уравнения базисные неизвестные
с помощью горизонтальных уравнений, мы получаем уравнение
(3. )
Так как для закрытой модели транспортной задачи
, то полученные нами уравнения (3. ) и (3. ) одинаковы и, исключив из одного из них неизвестное
, мы получим уравнение-тождество 0=0, которое из системы вычеркивается.
Итак, преобразование системы (3. ) свелось к замене двух уравнений (первого горизонтального и первого вертикального) уравнением (3. ). Остальные уравнения остаются неизменными. Система приняла вид
(3. )
В системе (3. ) выделен указанный выше базис: базисные неизвестные из первых т уравнений образуют первый столбец матрицы перевозок, а базисные неизвестные остальных уравнений образуют первую строку матрицы перевозок без первого неизвестного
[она входит в первое уравнение системы (3. )]. В системе (3. ) имеется
уравнений, выделенный базис содержит
неизвестных, а, следовательно, и ранг системы (3. )
.
Для решения транспортной задачи необходимо кроме запасов и потребностей знать также и тарифы
, т. е. стоимость перевозки единицы груза с базы
потребителю
.
Совокупность тарифов
также образует матрицу, которую можно объединить с матрицей перевозок и данными о запасах и потребностях в одну таблицу 3.:
Таблица 3. - Совокупность тарифов данные о запасах и потребностях
| Пункты Отправления | Пункты назначения | Запасы | |||||||||||||||
|
|
| … |
| ||||||||||||||
|
|
|
| … |
|
| ||||||||||||
|
|
|
| |||||||||||||||
|
|
|
| … |
|
| ||||||||||||
|
|
|
| |||||||||||||||
| … | … | … | … | … | … | ||||||||||||
|
|
|
| … |
|
| ||||||||||||
|
|
|
| |||||||||||||||
| Потребности |
|
| … |
|
или
| ||||||||||||
Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных
:
(3. )
Требуется в области допустимых решений системы уравнений (3. ) и (3.) найти решение, минимизирующее линейную функцию (3. ).
Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен
то среди всех
неизвестных
выделяется
базисных неизвестных, а остальные
·
неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем
заполненных и
·
пустых клеток.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















