183536 (584676)

Файл №584676 183536 (Модель авторегрессии в корреляционной теории)183536 (584676)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Модель авторегрессии в корреляционной теории

1. Принципы построения модели авторегрессии

В основу модели АР положена корреляция отсчета случайного процесса в текущий момент времени с некоторым конечным или бесконечным числом отсчетов в предыдущие моменты времени. Корреляционные связи позволяют осуществить регрессию текущего отсчета на предшествующие отсчеты.

Такой вид регрессии называется авторегрессией. В уравнении АР текущий отсчет представляется взвешенной суммой предыдущих с некоторыми коэффициентами веса

, (1)

где - коэффициенты АР, - некоррелированные случайные отсчеты, - порядок модели АР.

Величина

, (2)

называется предсказанием случайной величины . Разность между текущим значением отсчета и его предсказанием называется ошибкой предсказания

. (3)

Величина характеризует, по существу, максимальную точность предсказания текущего отсчета, а ее статистические свойства определяют выбор порядка модели АР.

Из (1) видно, что построение АР модели случайного процесса сводится к нахождению коэффициентов АР и определению порядка .

Умножив правую и левую части (1) на , а затем усреднив, можно получить систему уравнений

, , (4a)

, (4б)

где - значения функции корреляции случайного процесса

- дисперсия ошибок предсказания модели АР, - дисперсия случайного процесса . Набор уравнений (4а) и (4б) называется полной системой уравнений Юла – Уокера.

Решением этой системы являются коэффициенты АР и дисперсия ошибок предсказания. При выводе уравнений (4а) было учтено, что

, , , (5a)

, , . (5б)

Соотношения (5) следуют из некоррелированности ошибок предсказания . Решение системы уравнений (4а) можно представить в матричном виде

, (6a)

где

, , . (6б)

Как видно из (4а), уравнение не изменится, если вместо использовать нормированные значения функции корреляции , которые называются коэффициентами корреляции. Очевидно, что при этом параметры модели АР останутся прежними.

Как следует из (6а, б), для первого порядка модели АР

. (7)

Для модели АР второго порядка коэффициенты АР равны

,

. (8)

Отметим важное свойство коэффициентов АР, на котором основано использование моделей предсказания в качестве обеляющих фильтров. Коэффициенты АР, рассчитанные с помощью уравнений Юла-Уокера (4а) минимизируют дисперсию ошибки предсказания

. (9)

В этом легко убедиться, продифференцировав (9) по , и приравняв производную к нулю. При этом полученная система уравнений совпадает с (4а).

Достоинством модели АР является ее конструктивность, заключающаяся в возможности синтеза довольно простым образом алгоритмов обработки случайных процессов.

На рис. 1 представлен АР фильтр предсказания (обеляющий фильтр), алгоритм действия которого описывается выражением (3). Он состоит из линий задержки, усилителей с коэффициентами усиления , и сумматора.

Ошибки предсказания на выходе этого фильтра будут отсчетами белого шума, а точнее некоррелированным процессом. Дисперсия ошибки предсказания на выходе фильтра будет иметь минимальное значение, если коэффициенты АР найдены из уравнения (4а).

Порядок процесса АР определяется с использованием различных критериев, как правило, основанных на минимизации некоторой теоретико-информационной функции. Для определения порядка модели пользуются методами Бартлетта, Акайке, Парзена.

Порядок модели можно находить из условия не убывания дисперсии ошибки предсказания при дальнейшем повышении порядка. Довольно эффективным методом определения порядка модели АР является метод, основанный на проверке близости корреляционной функции случайного процесса на выходе обеляющего АР фильтра к корреляционной функции белого шума.

Рисунок 1. АР фильтр предсказания

Процессы АР можно характеризовать конечным числом значений функции, определяемой корреляционной функцией.

Такая функция носит название частной автокорреляционной функции. Ее можно выразить через коэффициенты АР, порядок которых изменяется от единицы до .

Т.к. коэффициент АР с номером полагается равным нулю, то процесс АР можно характеризовать конечным набором не равных нулю коэффициентов АР, с номером равным р для моделей АР с порядками от единицы до - , .

Поэтому значения частной автокорреляционной функции полагаются равными , . Можно показать, что первые три значения частной автокорреляционной функции описываются выражениями вида

,

,

. (10)

Достоинством частной автокорреляционной функции по сравнению с автокорреляционной функцией является ее конечная длина.

Как показал Бартлетт, значение частной автокорреляционной функции можно полагать равным нулю, если оно меньше , где - длина реализации, по которой производилась оценка значений функции корреляции. Таким образом, по существу, производится оценка порядка модели АР.

  1. Спектр процесса авторегрессии

Формула для нахождения спектра модели АР лежит в основе параметрического спектрального оценивания.

Для ее вывода будем рассматривать процесс АР как реакцию формирующего фильтра , на вход которого подаются некоррелированные отсчеты .

Можно показать, что -преобразование передаточной функции АР фильтра имеет вид

, (11)

где

, . (12)

-преобразования СПМ выходного и входного процессов связаны соотношением

. (13)

Чтобы найти СПМ выходного АР процесса необходимо в (13) сделать замену и положить, что для белого шума – постоянная величина.

Тогда из (13) следует выражение для параметрической оценки СПМ

. (14)

Выражение (14) широко используется в параметрическом методе спектрального оценивания.

В качестве параметров, полностью характеризующих спектральную оценку случайного процесса, выступают коэффициенты АР и порядок модели.

Параметрическое спектральное оценивание обладает рядом преимуществ по сравнению с традиционными методами спектрального оценивания. К ним относятся: более высокое спектральное разрешение при использовании коротких выборок, отсутствие боковых лепестков.

С помощью модели АР можно получать спектральные оценки случайных процессов со сложной формой СПМ.

Для этого может быть придется использовать модели АР большого порядка. На основе модели АР легко синтезируются оптимальные фильтры подавления, согласованные не только по частоте и полосе спектра, но и по форме спектра случайного процесса.

Достоинством формулы (14) является возможность анализировать СПМ в аналитическом виде, что невозможно сделать при использовании традиционных методов спектрального оценивания на основе преобразования Фурье.

Например, можно найти формулы для определения частоты максимумов и минимумов СПМ.

Чтобы определить положение максимума или минимума АР оценки СПМ, нужно взять производную от (14) по и приравнять ее к нулю. Корни полученного уравнения определяют положение экстремумов функции СПМ.

При , можно показать, что

, (15)

где – частота на которой находится максимум СПМ.

3. Характеристическое уравнение модели авторегрессии

Модель АР, описываемая уравнением (1), может быть представлена в операторной форме

, (16)

где оператор АР имеет вид

. (17)

Действие оператора сдвига z на текущий отсчет описывается следующим образом

. (18)

Из условия устойчивости формирующего АР фильтра с рациональной передаточной функцией (11), следует условие стационарности АР процесса. Для проверки стационарности случайного АР процесса используется характеристическое уравнение

. (19)

Если корни характеристического уравнения (19) лежат внутри единичного круга на комплексной плоскости, то процесс АР удовлетворяет условию стационарности и его корреляционная функция стационарна. Характеристическое уравнение (19) можно представить также в виде

. (20)

Тогда условие стационарности заключается в том, что корни характеристического уравнения (20) должны лежать вне единичного круга на комплексной плоскости.

Используя (19) или (20) оператор АР (17) можно представить в виде

. (21)

Из (21) следует, что уравнение АР (1) можно записать следующим образом

. (22)

Сравнивая (1) и (22) найдем связь между коэффициентами АР и корнями характеристического уравнения (20). Приведем соответствующие формулы для :

, (23a)

Характеристики

Тип файла
Документ
Размер
1,24 Mb
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее