183431 (584608), страница 2
Текст из файла (страница 2)
находим коэффициенты регрессии а0 и а1.
Все необходимые числовые значения рассчитаны ранее (см. расчетную таблицу), подставим их в систему нормальных уравнений: ему нормальных уравнений: бюджет льуплений от налога на прибыль предприятий о с увеличением размера среднемесячной зарплаты Х н
и решим её относительно а0, а1. Получим коэффициенты регрессии: а0=6,622 и .
Итак, уравнение регрессии имеет вид: .
Коэффициент а0=6,622 формально интерпретируется как взаимозаменяемость потребление животного масла, равным нулю, т.е. при х=0. Это вполне имеет смысл. Т.о., взаимозаменяемость животного масла в среднем в январе – декабре 2007 г. составляла 6,622 кг.
А коэффициент показывает, что полученная линейная связь взаимозаменяемости потребления животного масла (результативного признака Y) и растительного масла (фактора Х) – положительна, то есть при увеличении потребления растительного масла на 1 кг. от среднего значения, то потребление животного масла вырастит на 0,352 от среднего значения.
В декартовой системе координат ХОУ на поле корреляции строим и график линии регрессии по найденному уравнению.
Действительно, видим, что точки поля корреляции плотно расположены вдоль прямой регрессии. А значит, построенная линейная модель хорошо описывает стат. данные. Проведём подробный анализ её качества.
Этап 6 Верификация
Линейный коэффициент корреляции
Вычислим его по другой формуле, проверим правильность расчётов:
- совпадает с вычисленным ранее (небольшое различие – из-за округления).
Коэффициент детерминации
По свойству: .
Он показывает, что вариация результативного признака Y (потребление животного масла) на 90,6% объясняется вариацией фактора X (потребление растительного масла). То есть потребление животного масла на 78,6% обусловлены взаимозаменяемостью растительного масла. А в остальном – на 9,4% потребления животного масла обусловлено колебаниями и изменениями других факторов и условий.
Т.е., подтвердилось предположение о взаимозаменяемости потребления животного масла и растительного масла.
Средний коэффициент эластичности
Для линейной регрессии: .
Средний коэффициент эластичности показывает, что в среднем при увеличении потребления животного масла на 1% от своего среднего значения, потребление растительного масла увеличится в среднем на 0,923% от своего среднего значения.
Эластичность взаимозаменяемых товаров достаточно велика, что вполне согласуется со сложившейся ситуацией на рынке продовольствия в РФ. Чем выше продажа растительного масла, тем сильнее и заметнее растет продажа животного масла. Проверим правильность вычислений: (см. расчётную табл. - действительно).
Оценка статистической значимости коэффициентов регрессии и коэффициента корреляции
Оценим статистическую значимость полученных коэффициентов регрессии а0 и а1, коэффициента корреляции rух с помощью t-критерия Стьюдента на уровне значимости =0,05.
Эта проверка проводится по единой схеме, с помощью гипотез.
Выдвигается нулевая гипотеза Н0 о случайной природе полученного коэффициента, о незначимом его отличии от нуля, то есть гипотеза Н0 состоит в том, что коэффициент=0. Альтернативная ей гипотеза Н1 состоит в том, что неслучайно, то есть полученный коэффициент статистически значим. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство
на уровне значимости
и с (n–2) степенями свободы, где n – количество наблюдений, уровень значимости – вероятность совершить ошибку, отвергнув гипотезу Н0, когда она верна.
Для а1: Н0: а1=0, Н1: .
Рассчитаем стандартную ошибку коэффициента регрессии а1 – .
Потребуется сделать промежуточные вычисления: подставляя фактические значения хi в уравнение регрессии найдем смоделированные значения , затем вычислим разность между фактическими и смоделированными значениями, т.е. остатки
, затем возведём остатки в квадрат еi2 и просуммируем; результаты представлены в расчетной таблице. Теперь подставим необходимые данные в формулу для расчёта
:
и t-статистики по модулю:
.
Затем сравним наблюдаемое значение с табличным значением t-критерия Стьюдента. Табличное значение по таблице распределения Стьюдента на уровне значимости =0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01. Наблюдаемое значение t-статистики превышает табличное значение t-критерия: 22 > 2,01, то есть выполнено неравенство
, а значит, гипотеза Н0 о случайной природе полученного коэффициента отвергается и принимается альтернативная ей гипотеза Н1, свидетельствующая в 95% случаев о статистической значимости полученного коэффициента регрессии а1. Т.о., можно считать, что взаимозаменяемость товаров подтвердилась и статистически установлена.
Для а0: Н0: а0=0, Н1: .
Рассчитаем стандартную ошибку коэффициента регрессии а0 – . Все необходимые цифры уже имеются в расчетной таблице, подставим эти данные в формулу:
, а затем рассчитаем t-статистику по модулю:
.
Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости =0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01,где 2<ta0< 3 (tтабл > ta0) можно сделать вывод, что коэффициент регрессии а0 можно признать статистически значимым в 90% случаев.
Для rух: Н0: rух=0, Н1: .
Для этого рассчитаем стандартную ошибку коэффициента корреляции rух – :
и t-статистику по модулю:
.
Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости =0,05 с n–2=55-2=53 степенями свободы: tтабл=2,01, можно сделать вывод о статистической значимости полученного коэффициента корреляции rух в 95% случаев, предполагаемая взаимозаменяемость товаров подтвердилась.
Проверим правильность вычислений: , действительно 2222,7.
Доверительные интервалы для параметров регрессионной модели 0 и 1
Доверительный интервал для 0 с надежностью =1-: . Выбрав уровень значимости =0,05, получаем надежность =0,95. Все необходимые цифровые значения уже рассчитаны ранее, тогда
, откуда получаем (0,4312; 12,813).ыберемрительной вероятностью ров регрессионной модели 0000000000000000000000000000000000000000000000000000000000000000000000000
Доверительный интервал для 1 с надежностью =1-: . При выбранной надежности =0,95:
, откуда (0,32; 0,384).
Таким образом, с надежностью 95% можно утверждать, что истинное значение параметра 0 будет заключено в пределах от 0,4312 до 12,813, а истинное значение параметра 1 - в границах от 0,32 до 0,384.
Следует отметить, что доверительные интервалы узкие, т.к. значения стандартных ошибок и
малы. А это подтверждает, что другие факторы оказывают несущественное влияние на покупательскую способность товаров. Основным фактором является выбранный фактор Х – замена растительным маслом. Значит, точность модели будет вполне приемлемой.
Оценка качества уравнения регрессии в целом
F-критерий Фишера
Выдвигается нулевая гипотеза Н0 о статистической незначимости уравнения регрессии. Альтернативная ей гипотеза Н1 о статистической значимости. Чтобы опровергнуть гипотезу Н0 и подтвердить гипотезу Н1 должно выполняться неравенство .
Рассчитаем наблюдаемое значение F-критерия (воспользуемся свойством для линейной парной регрессии): .
Табличное значение по таблице распределения Фишера на уровне значимости =0,05 с k1=1 и k2=n–2=23-2=21 степенями свободы: Fтабл=4,03. Наблюдаемое значение F–критерия превышает табличное: 510,83 > 4,03, то есть выполнено неравенство , а значит, гипотеза Н0 о случайной природе полученного уравнения регрессии отклоняется в пользу гипотезы Н1, свидетельствующей в 95% случаев о его статистической значимости и взаимозаменяемости товаров. Уравнение по данным выборки можно признать надежным и значимым, доказывающим наличие исследуемой зависимости.
Оценка аппроксимации модели
Потребуется сделать промежуточные вычисления: остатки еi разделим на фактические значения уi, полученные частные от этих делений возьмем по модулю и просуммируем; результаты представлены в расчетной таблице.
Средние ошибки аппроксимации: ,
. Ошибки почти совпадают и равны 25%.
В среднем смоделированные значения взаимозаменяемость животного масла отклоняются от фактических на 9-12%. Подбор модели к фактическим данным можно оценить как не точный, так как средняя ошибка аппроксимации превышает 20%.
Но, учитывая высокое качество модели и сильную линейную зависимость между Y (потребление животного масла) и Х (потребление растительного масла), эту модель можно использовать для прогнозирования с осторожностью.
Т.к. большую погрешность. Только при этом следует помнить, что в некоторых случаях прогнозы могут быть вполне точны, а в некоторых содержать немаленькую погрешность, до 12% в среднем.
Этап 7 Выводы, предложения. Прогнозирование
Прогнозирование по полученному уравнению регрессии
Полученные оценки уравнения регрессии не позволяют использовать его для качественного прогноза взаимозаменяемости товаров. Как уже говорилось, точность модели невысока. Можно её использовать лишь для того, чтобы составить приблизительное мнение о взаимозаменяемости и только в рассмотренный период.
Пусть прогнозное значение фактора х=300 кг (при этом реальное потребление животного масла в январе-феврале 2007 г. - 100 кг.) Точечный прогноз: кг.
Как видим, прогноз непригоден, сильно завышен.
Пусть прогнозное значение фактора х=90 кг (при этом реальная потребление животного масла в январе-феврале 2007 г. - 43 кг.)) Точечный прогноз: кг.
Как видим, в этом случае прогноз занижен, но более-менее соответствует действительности, особенно если учесть, что его погрешность 9-12%. Можно сделать поправку на эту погрешность, и тогда получим 32,902 кг., тоже не равно реальному значению. Реальное значение 43 кг., оказалось как раз между ними. Но как это угадать при неизвестном значении Y (продажа животного масла)?
Доверительный интервал для средней продажи животного масла при условии, при условии взаимозаменяемости растительным маслом, х=90 км с надежностью =0,95:
,
где стандартная ошибка для средних значений: .
И даже этот доверительный интервал продаж животного масла от 34,242 до 42,362 кг. не включает в себя реального значения, занижает прогноз.