168674 (582679)
Текст из файла
ЭКОЛОГИЯ
Контрольная работа № 1
Вопрос № 8.
Вода, как среда обитания животных организмов: плотность, давление, кислород, освещенность, солевой режим, течения, температура. Отличия от воздушной среды. Приспособления растений и животных.
Благодаря широкой распространённости воды и её роли в жизни людей, она издавна считалась первоисточником жизни. Представление философов античности о воде как о начале всех вещей нашло отражение в учении Аристотеля (4 в. до н. э.) о четырёх стихиях (огне, воздухе, земле и воде), причём вода считалась носителем холода и влажности. Вплоть до конца 18 века в науке существовало представление о воде, как об индивидуальном химическом элементе. В 1781—82 годах английский учёный Г. Кавендиш впервые синтезировал воду, взрывая электрической искрой смесь водорода и кислорода, а в 1783 году французский учёный А. Лавуазье повторив эти опыты, впервые сделал правильный вывод, что вода есть соединение водорода и кислорода. В 1785 году Лавуазье совместно с французским учёным Ж. Менье определил количественный состав воды. В 1800 году английские учёные У. Николсон и А. Карлейль разложили воду на элементы электрическим током. Таким образом, анализ и синтез воды показали сложность её состава и позволили установить для неё формулу H2O. Изучение физических свойств воды началось ещё до установления её состава в тесной связи с другими научно-техническими проблемами. В 1612 году итальянский учёный Г. Галилей обратил внимание на меньшую плотность льда сравнительно с жидкой водой как на причину плавучести льда. В 1665 году голландский учёный Х. Гюйгенс предложил принять температуру кипения и температуру плавления воды за опорные точки шкалы термометра. В 1772 году французский физик Делюк нашёл, что максимум плотности воды лежит при 4°С; при установлении в конце 18 века метрической системы мер и весов это наблюдение было использовано для определения единицы массы – килограмма. В связи с изобретением паровой машины французские учёные Д. Араго и П. Дюлонг (1830 г.) изучили зависимость давления насыщенного пара воды от температуры. В 1891—97 годах Д. И. Менделеев дал формулы зависимости плотности воды от температуры. В 1910 году американский учёный П. Бриджмен и немецкий учёный Г. Тамман обнаружили у льда при высоком давлении несколько полиморфных модификаций. В 1932 году американские учёные Э. Уошберн и Г. Юри открыли тяжёлую воду. Развитие физических методов исследования позволило существенно продвинуться в изучении структуры молекул воды, а также строения кристаллов льда. В последние десятилетия особое внимание учёных привлекает структура жидкой воды и водных растворов.
Физические свойства и строение воды. Важнейшие физические константы воды приведены в таблице 1. Тройная точка для воды, где находятся в равновесии жидкая вода, лёд и пар, лежит при температуре +0,01°С и давлении 6,03·10-3 атм.
Многие физические свойства воды обнаруживают существенные аномалии. Как известно, свойства однотипных химических соединений у элементов, находящихся в одной и той же группе периодической системы Менделеева, изменяются закономерно. В ряду водородных соединений элементов VI группы (H2Te, H2Se, H2S, H2O) температуры плавления и кипения закономерно уменьшаются лишь у первых трёх; для воды эти температуры аномально высоки. Плотность воды в интервале 100—4°С нормально возрастает, как и у огромного большинства других жидкостей. Однако, достигнув максимального значения 1,0000 г/см3 при +3,98°С, при дальнейшем охлаждении уменьшается, а при замерзании скачкообразно падает, тогда как почти у всех остальных веществ кристаллизация сопровождается увеличением плотности. Вода способна к значительному переохлаждению, т. е. может оставаться в жидком состоянии ниже температуры плавления (даже при —30°С). Удельная теплоёмкость, удельная теплота плавления и кипения воды аномально высоки по сравнению с другими веществами, причём удельная теплоёмкость воды минимальна при 40°С. Вязкость воды с ростом давления уменьшается, а не повышается, как следовало бы ожидать по аналогии с другими жидкостями. Сжимаемость воды крайне невелика, причём с ростом температуры уменьшается.
Таблица 1. Физические свойства воды
Свойство | Значение Воздух для ср. |
Плотность, г/см3 |
|
лёд | 0,9168 (0°С) |
жидкость | 0,99987 (0°С) 1,0000 (3,98°С) 0,99823 (20°С) 0,001248 (20°С) |
Пар насыщенный | 0,5977 кг/м3 (100°С) |
Температура плавления | 0°С |
Температура кипения | 100°С |
Критическая температура | 374,15°С —140,7°С |
Критическое давление | 218,53 кгс/см2 3,7 Мн/м2 (37,2 am) |
Критическая плотность | 0,325 г/см3 |
Теплота плавления | 79,7 кал/г |
Теплота испарения | 539 кал/г (100°С) |
Удельная теплопроводность, кал/(см·сек·град) |
|
лёд | 5,6·10-3 (0°С) |
жидкость | 1,43·10-3 (0°С) 1,54·10-3 (45°С) |
Пар насыщенный | 5,51·10-5 (100°С) |
Уд. электропроводность, ом--1·см-1 |
|
лёд | 0,4·10-8 (0°С) |
жидкость | 1,47·10-8 (0°С) 4,41·10-8 (18°С) 18,9·10-8 (50°С) |
Удельная теплоёмкость Кал/(г·град) |
|
жидкость | 1,00 (15°С) 10,045·103 дж/(кг·К) |
Пар насыщенный | 0,487 (100°С) |
Диэлектрическая проницаемость |
|
лёд | 74,6 (°С) |
жидкость | 81,0 (20°С) 1,000059 (0°С). |
Пар насыщенный | 1,007 (145°С) |
Вязкость, спз |
|
Жидкость | 1,7921 (0°С) 0,000171 (0°С) 0,284 (100°С)
|
Поверхностное натяжение жидкой воды на границе с воздухом, дин/см | 74,64 (0°С) 62,61 (80°С) |
Показатель преломления (D — линия | 1,33299 (20°С) 1,00029 |
Примечание: 1 кал/(см·сек·град) = 418,68 вт/(м·К); 1 ом-–1·см-–1 = 100 сим/м;
1 кал/(г·град) =.4,186 кдж (кг·К); 1 спз = 10—3н·сек/м2; 1 дин/см = 10–3н/м.
Аномалии физических свойств воды связаны со структурой её молекулы и особенностями межмолекулярных взаимодействий в жидкой воде и льде. Три ядра в молекуле В. образуют равнобедренный треугольник с протонами в основании и кислородом в вершине (Рис. 1, а). Распределение электронной плотности в молекуле В. таково (Рис 1, б, в), что создаются 4 полюса зарядов: 2 положительных, связанных с атомами водорода, и 2 отрицательных, связанных с электронными облаками необобществлённых пар электронов атома кислорода. Указанные 4 полюса зарядов располагаются в вершинах тетраэдра (Рис 1, г). Благодаря этой полярности вода имеет высокий дипольный момент(1,86 D), а четыре полюса зарядов позволяют каждой молекуле воды образовать четыре водородные связи с соседними (такими же) молекулами (например, в кристаллах льда).м
Рис. 1. Структура молекулы воды: а — геометрия молекулы H2O (в парообразном состоянии); б — электронные орбиты в молекуле H2O; в — электронная формула молекулы H2O (видны необобществленные электронные пары); г — четыре полюса зарядов в молекуле H2O расположены в вершинах тетраэдра.
Вода входит в состав всех живых организмов, причём в целом в них содержится лишь вдвое меньше воды, чем во всех реках Земли. В живых организмах количество воды, за исключением семян и спор, колеблется между 60 и 99,7% по массе. По словам французского биолога Э. Дюбуа-Реймона, живой организм есть l'eau animée (одушевлённая вода). Все воды Земли постоянно взаимодействуют между собой, а также с атмосферой, литосферой и биосферой.
Вода в природных условиях всегда содержит растворённые соли, газы и органические вещества. Их количественный состав меняется в зависимости от происхождения воды и окружающих условий. При концентрации солей до 1 г/кг воду считают пресной, до 25 г/кг — солоноватой, свыше — солёной.
Наименее минерализованными водами являются атмосферные осадки (в среднем около 10—20 мг/кг), затем пресные озёра и реки (50—1000 мг/кг). Солёность океана колеблется около 35 г/кг; моря имеют меньшую минерализацию (Чёрное 17—22 г/кг; Балтийское 8—16 г/кг; Каспийское 11—13 г/кг). Минерализация подземных вод вблизи поверхности в условиях избыточного увлажнения составляет до 1 г/кг, в засушливых условиях до 100 г/кг, в глубинных артезианских вода минерализация колеблется в широких пределах. Максимальные концентрации солей наблюдаются в соляных озёрах (до 300 г/кг) и глубокозалегающих подземных водах. (до 600 г/кг).
В пресных водах обычно преобладают ионы HCO3-, Са2+ и Mg2+. По мере увеличения общей минерализации растет концентрация ионов SO42-, Cl-, Na+ и К+. В высо-коминерализованных водах преобладают ионы Cl- и Na+, реже Mg2+ и очень редко Ca2+. Прочие элементы содержатся в очень малых количествах, хотя почти все естественные элементы периодической системы найдены в природных водах.
Из растворённых газов в природных водах присутствуют азот, кислород, двуокись углерода, благородные газы, редко сероводород и углеводороды. Концентрация органических веществ невелика — в среднем в реках около 20 мг/л, в подземных водах ещё меньше, в океане около 4 мг/л. Исключение составляют воды болотные и нефтяных месторождений и воды, загрязнённые промышленными и бытовыми стоками, где количество их бывает выше. Качественный состав органических веществ чрезвычайно разнообразен и включает различные продукты жизнедеятельности организмов, населяющих воду, и соединения, образующиеся при распаде их остатков.
Первоисточниками солей природных вод являются вещества, образующиеся при химическом выветривании изверженных пород (Ca2+, Mg2+, Na+, К+ и др.), и вещества, выделявшиеся на протяжении всей истории Земли из её недр (CO2, SO2, HCI, NH3 и др.). От разнообразия состава этих веществ и условий, в которых происходило их взаимодействие с водой, зависит состав воды. Громадное значение для состава воды имеет и воздействие живых организмов.
В связи с существованием двух стабильных изотопов у водорода (1H и 2H, обычно обозначаемые Н и D) и трёх у кислорода (16O,17O и 18O) известно 9 изотопных разновидностей воды, которые находятся в природной воде в среднем в следующих соотношениях (в молярных %): 99,73 H216O; 0,04 H217O; 0,20 H218O, 0,03 HD’16O, а также 10-5—10-15%(суммарно) HD17O, HD18O, D216O, D217O, D218O. Особый интерес представляет тяжелая вода D2O, содержащая дейтерий. В водах Земли находится всего13—20 кг «сверхтяжёлой» воды. содержащей радиоактивный изотоп водорода — тритий (3H, или Т).
Вода в организме — основная среда (внутриклеточная и внеклеточная), в которой протекает обмен веществ у всех растений, животных и микроорганизмов, а также субстрат ряда химических ферментативных реакций. В процессе фотосинтеза вода вместе с углекислым газом вовлекается в образование органических веществ и, таким образом, служит материалом для создания живой материи на Земле.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.