165792 (582562), страница 2
Текст из файла (страница 2)
Таблица 1 - Дефекты при эксплуатации сернокислых электролитов никелирования и способы их устранения
Дефект | Причина дефекта | Способ устранения |
Никель не осаждается. Обильное выделение водорода | Низкое значение рН | Откорректировать рН 3%-иым раствором едкого натра |
Частичное покрытие никелем | Плохое обезжиривание деталей | Улучшить подготовку |
Неправильное расположение анодов | Равномерно распределить аноды | |
Детали взаимно экранируют друг друга | Изменить расположение деталей в ванне | |
Покрытие имеет серый цвет | Наличие в электролите солей меди | Очистить электролит от меди |
Хрупкое, растрескивающееся покрытие | Загрязнение электролита органическими соединениями | Обработать электролит активированным углем и проработать током |
Наличие примесей железа | Очистить электролит от железа | |
Низкое значение рН | Откорректировать рН | |
Образование питтинга | Загрязнение электролита органическими соединениями | Проработать электролит |
Низкое назначение рН | Откорректировать рН | |
Слабое перемешивание | Усилить перемешивание | |
Появление черных или коричневых полос на покрытии | Наличие примесей цинка | Очистить электролит от цинка |
Образование дендритов на кромках деталей | Высокая плотность тока | Снизить плотность тока |
Чрезмерно продолжительный процесс никелирования | Ввести промежуточный подслой меди или уменьшить время электролиза | |
Аноды покрыты коричневой или черной пленкой | Высокая анодная плотность тока | Увеличить поверхность анодов |
Малая концентрация хлористого натрия | Добавить 2-3 г/л хлористого натрия |
При никелировании применяют горячекатаные аноды, а также непассивирующиеся аноды. Применяют также аноды в форме пластинок (карточек), которые загружают в зачехленные титановые корзины. Карточные аноды способствуют равномерному растворению никеля. Во избежание загрязнения электролита анодным шламом никелевые аноды следует заключать в чехлы из ткани, которые предварительно обрабатывают 2-10%-ным раствором соляной кислоты.
Отношение анодной поверхности к катодной при электролизе 2 : 1. Никелирование мелких деталей осуществляют в колокольных и барабанных ваннах. При никелировании в колокольных ваннах применяют повышенное содержание хлористых солей в электролите для предотвращения пассивации анодов, которая может возникать из-за несоответствия поверхности анодов и катодов, вследствие чего концентрация никеля в электролите понижается и уменьшается значение рН. Оно может достигнуть таких пределов, при которых вообще прекращается осаждение никеля. Недостатком при работе в колоколах и барабанах является также большой унос электролита с деталями из ванн. Удельные нормы потерь при этом составляют от 220 до 370 мл/м2.
Электролиты блестящего никелирования
Для защитно-декоративной отделки деталей широко применяют блестящие и зеркальные никелевые покрытия, получаемые непосредственно из электролитов с блескообразующими добавками. Состав электролита и режим никелирования:
Никель сернокислый - 280-300 г/л Никель хлористый - 50-60 г/л Кислота борная - 25-40 г/л Сахарин 1-2 г/л 1,4-бутиндиол - 0,15-0,18 мл/л Фталимид 0,02-0,04 г/л рН = 4-4,8 Температура = 50-60°С Плотность тока = 3-8 А/дм2
Для получения блестящих никелевых покрытий используют также электролиты с другими блескообразующими добавками: хлорамина Б, пропаргилового спирта, бензосульфамида и др.
При нанесении блестящего покрытия необходимо интенсивное перемешивание электролита сжатым воздухом желательно в сочетании с качанием катодных штанг, а также непрерывная фильтрация электролита, Электролит приготовляют следующим образом. В дистиллированной или деионизированной горячей (80-90°С) воде растворяют при перемешивании сернокислый и хлористый никель, борную кислоту. Доведенный водой до рабочего объема электролит подвергают химической и селективной очистке. Для удаления меди и цинка электролит подкисляют серной кислотой до рН 2-3 завешивают катоды большой площади из рифленой стали и прорабатывают электролит в течение суток при температуре 50-60°С, перемешивая сжатым воздухом. Плотность тока 0,1-0,3 А/дм2. Затем рН раствора доводят до 5,0-5,5, после чего в него вводят перманганат калия (2 г/л) или 30%-ный раствор перекиси водорода (2 мл/л).
Раствор перемешивается в течение 30 мин, добавляют 3 г/л активированного угля, обработанного серной кислотой, и перемешивают электролит 3-4 с помощью сжатого воздуха. Раствор отстаивается 7-12 ч, затем фильтруется в рабочую ванну.
В очищенный электролит вводят блескообразователи: сахарин и 1,4-бутиндиол непосредственно, фталимид - предварительно растворив в небольшом количестве электролита, подогретого до 70-80° С. Доводят рН до требуемого значения и приступают к работе. Расход блескообразователей при корректировании электролита составляет: сахарин 0,01-0,012 г/(А•ч); 1,4-бутнндиол (35%-ный раствор) 0,7-0,8 мл/(А•ч); фталимид 0,003-0,005 г/(А•ч). Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 2.
Таблица 2 - Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения
Дефект | Причина дефекта | Способ устранения |
Недостаточный блеск покрытия | Мала концентрация блескообразователей | Ввести блескообразователи |
Не выдерживается заданная плотность тока и рН | Отрегулировать плотность тока и рН | |
Темный цвет покрытия и/или темные пятна | В электролите имеются примеси тяжелых металлов | Произвести селективную очистку электролита при низкой плотности тока |
Питтинг | Наличие в электролите примесей железа | Очистить электролит и ввести антипиттинговую добавку |
Недостаточное перемешивание | Увеличить воздушное перемешивание | |
Низкая температура электролита | Повысить температуру электролита | |
Хрупкие осадки | Загрязнение электролита органическими соединениями | Очистить электролит активированным углем |
Пониженное содержание 1,4-бутиндиола | Ввести добавку 1,4-бутиндиола |
Химическое никелирование
Наряду с электролитическим никелированием широко применяют процесс химического никелирования, основанный на восстановлении никеля из водных растворов с помощью химического восстановителя. В качестве восстановителя используют гипофосфит натрия.
Химическое никелирование применяют для покрытия никелем деталей любой конфигурации. Химически восстановленный никель обладает высокой коррозионной стойкостью, большой твердостью и износостойкостью, которые могут быть значительно повышены при термической обработке (после 10-15 мин нагрева при температуре 400°С твердость химически осажденного никеля повышается до 8000 МПа). При этом возрастает и прочность сцепления. Никелевые покрытия, восстановленные гипофосфитом, содержат до 15% фосфора. Восстановление никеля гипофосфитом протекает по реакции NiCl2 + NaH2PO2 + H2O → NaH2PO3 + 2HCl + Ni.
Одновременно происходит гидролиз гппофосфита натрия. Степень полезного использования гппофосфита принимают около 40%. Восстановление никеля из его солей гипофосфитом самопроизвольно начихается только на металлах группы железа, которые катализируют этот процесс. Для покрытия других каталитически неактивных металлов (например, меди, латуни) необходим контакт этих металлов в растворе с алюминием или другими более электроотрицательными, чем никель, металлами. Для этой цели используют активирование поверхности обработкой в растворе хлористого палладия (0,1-0,5 г/л) в течение 10-60 с. На некоторых металлах, таких, как свинец, олово, цинк, кадмий, никелевое покрытие не образуется даже при использовании методой контактирования и активирования. Химическое осаждение никеля возможно как из щелочных, так и из кислых растворов. Щелочные растворы характеризуются высокой стабильностью и простотой корректировки.
Покрытия, полученные в кислых растворах, отличаются меньшей пористостью, чем из щелочных растворов (при толщине выше 12 мкм покрытия практически беспористые). Из кислых растворов химического никелирования рекомендуется следующий состав (г/л) и режим никелирования:
Никель сернокислый - 20-30 г/л Натрий уксуснокислый - 10-20 г/л Натрия гипофосфит - 20-25 г/л Тиомочевина 0,03 г/л Кислота уксусная (ледяная) - 6-10 мл/л рН = 4,3-5,0 Температура = 85-95°С Скорость осаждения = 10-15 мкм/ч
Химическое никелирование осуществляют в стеклянных, фарфоровых или железных эмалированных ваннах. В качестве материала подвесок применяют углеродистую сталь.
В последнее время химическим путем наносят покрытие сплава никель-бор с использованием в качестве восстановителя борсодержащих соединений - борогидрида натрия и диметилбората, которые обладают более высокой восстановительной способностью по сравнению с гипофосфитом. Полученные покрытия сплавом никель-бор имеют высокую износостойкость и твердость.
Г
Покрытие металлов никелем, цинком, хромом, серебром и золотом можно делать без гальванической ванны с помощью несложного приспособления - миниатюрной гальванической установки. Она состоит из специальной кисти, внутрь которой может заливаться электролит, понижающего трансформатора с напряжением 4 - 12 Вольт и током 0, 8 - 1, 0 Ампер и соединительного шнура.
Щетина кисти обматывается медным проводом (см. рисунок). Диод типа Д303 - Д305 устанавливают внутри кисти или снаружи. Диаметр кисти 20 - 25 мм., «минус» источника напряжения соединяется при помощи зажима «крокодил» с обрабатываемым куском металла, а «плюс» с намотанной на щетину проволокой. Вместо щетины можно применить пористую губку.
Покрываемые металлические предметы должны быть тщательно очищены от грязи, жира, ржавчины и т.п. Ржавчину удаляют травлением в кислоте, а остатки краски - шлифовкой наждачной шкуркой. После этого поверхность протирается чистым куском материи и обезжиривается специальным раствором. Чем ровней и чище будет поверхность, тем прочнее будет гальваническое покрытие.
После очистки покрываемых металлических предметов делают все указанные выше соединения, включают трансформатор в сеть, заливают электролит в кисть и равномерными движениями проводят кистью по поверхности металла, не отрывая кисть от поверхности. Тотчас же будет замечаться тонкий металлический осадок, который постепенно наращивается.