160791 (581561), страница 2
Текст из файла (страница 2)
Если не оговорено условие вероятностной зависимости риск-переменных, то считается, что переменные являются независимыми и подчиняющимися некоторому закону распределения.
Закон распределения задает вероятность выбора значений в рамках определенного диапазона. Стандартные инвестиционные расчеты используют один вид распределения вероятностей для всех проектных переменных, включенных в расчетную модель — детерминированное распределение, когда конкретное единственное значение переменной выбирается с вероятностью, равной единице (р = 1). Следовательно, базовая модель инвестиционного проекта может рассматриваться как детерминированный анализ и частный случай имитационной модели для детерминированных риск-переменных.
Для каждой риск-переменной, являющейся случайной величиной, в процессе создания модели необходимо подобрать вид распределения.
Задача подбора закона распределения сложна прежде всего из-за ограниченности статистических данных. На практике чаще всего используют следующие законы распределения вероятностей: нормальный, треугольный, равномерный, дискретный.
Алгоритм решения задачи подбора закона распределения:
1) определить возможные границы изменения риск-переменной (границы диапазона);
2) выбрать общий вид закона распределения;
3) с учетом диапазона изменения переменной и общего вида оценить основные числовые характеристики закона распределения (непрерывный случай) или приписать возможным значениям риск-переменной вероятности их реализации (дискретный случай).
Как следует из вышеизложенного, процесс подбора законов распределения является в значительной степени творческим процессом, требует анализа различного вида информации и плохо поддается формализации.
Необходимо отметить, что проблема выбора типа распределения вероятностей очень важная, так как точность подбора закона распределения при заданных границах изменения риск-переменных непосредственно влияет на качество модели и точность оценки .распределения вероятностей NPV и другие результаты моделирования.
Отсутствие учета вероятностной зависимости переменных, в частности, коррелированное, может привести к заметным искажениям результатов статистического моделирования. Включение вероятностно зависимых риск-переменных в математическую модель инвестиционного проекта может привести к серьезным искажениям характеристик устойчивости проекта, если условие зависимости не будет учтено в математической модели. Степень смещения результатов зависит от важности вероятностно зависимых переменных по отношению к проекту. Поэтому проводится специальный этап установления наличия вероятностной зависимости, в частности, корреляции между переменными и поиска возможностей ее учета в модели. Это касается как парной, так и множественной корреляции.
2.2 Осуществление имитации
Основным этапом имитационного моделирования, в рамках которого с помощью компьютерной программы и реализован алгоритм метода Монте-Карло, является этап осуществления имитации. Он выполняется следующим образом:
1. Генерирование случайных чисел производится путем компьютерной операции получения псевдослучайных чисел, независимых и равномерно распределенных на отрезке [0; 1]. Каждое новое полученное случайное число рассматривается как значение функции распределения для соответствующей риск-переменной.
2. Значение каждой независимой риск-переменной восстанавливается как аргумент функции распределения вероятностей данной риск-переменной. При этом учитывается существование вероятностной зависимости.
3. Значения переменных величин подставляются в модель и рассчитывается интегральный показатель эффективности проекта (NPV или другой показатель, например, IRR, PI и т.д.)
4. Изложенный в пп. 1—3 алгоритм повторяется n раз. Результаты моделирования (т.е. NPV проекта или другой показатель), таким образом, рассчитываются и сохраняются для каждого имитационного эксперимента.
Каждый имитационный эксперимент — это случайный сценарий. Количество имитационных экспериментов или случайных сценариев должно быть достаточно велико, чтобы сделать выборку репрезентативной по отношению к бесконечному числу возможных комбинаций.
Размер случайной выборки n зависит от количества переменных в модели, от диапазона значений риск-переменных и от желаемой точности получения результатов.
На этом же этапе возникает проблема определения погрешности результатов моделирования в зависимости от количества выполненных имитационных экспериментов. Выбор (n) имеет огромное значение для оценки качества модели, т.е. точности подбираемого закона распределения NPV и его характеристик.
2.3 Анализ результатов
Финальным этапом процесса риск-анализа являются анализ и интерпретация результатов, полученных на этапе имитации.
Анализ результатов имитационного моделирования можно разделить на два типа: графический анализ и анализ количественных показателей.
Результатом проведения имитационных экспериментов является выборка из n значений NPV (или другого результирующего показателя). Вероятность каждого случайного сценария равна:
P(i) = 1/n,
где n - количество имитационных экспериментов.
Следовательно, вероятность того, что проектный результат будет ниже определенного значения равна количеству результатов, при которых значение показателя было ниже этого значения, умноженному на вероятность реализации одного наблюдения.
Построив график кумулятивного распределения частот появления результатов, можно рассчитать значение вероятности того, что результат проекта будет ниже или выше заданного значения.
Для проведения графического анализа необходимо построить функции распределения вероятностей и плотности распределения вероятностей результирующего показателя (NPV или другого). В проектном анализе они называются соответственно кумулятивным профилем риска и профилем риска.
Таким образом, необходимо построить гистограмму NPV. Построение гистограммы является важным моментом в анализе результатов имитационного моделирования, так как она позволяет подобрать закон распределения результирующего показателя. По полученному массиву NPV строится вариационный ряд, т.е. значения NPV ранжируются от минимального до максимального.
Гистограмма строится путем разбиения вариационного ряда на k интервалов группирования. Выбор k осуществляется в соответствии с рекомендациями математической статистики. Далее оценивается согласованность эмпирических данных с подбираемым законом распределения с помощью критерия согласия х2.
Стандартные дисконтированные критерии принятия инвестиционного решения, обычно применяемые в детерминированном анализе, сохраняют свое значение и для данного метода. Однако, поскольку риск-анализ предоставляет лицу, принимающему решение, дополнительную информацию о проекте, инвестиционное решение может быть соответствующим образом изменено. Финальное решение, поэтому, субъективно и принимается почти всегда в зависимости от отношения (склонности) инвестора к риску.
Общее правило состоит в том, что выбирается проект с таким распределением вероятностей дохода, которое больше соответствует предрасположенности к риску лица, принимающего решение (ЛПР). Если ЛПР является «склонным к риску», оно с большей степенью вероятности выберет для инвестирования проекты с относительно высоким значением NPV, обращая меньше внимания на связанный с этим риск (разброс относительно среднего значения, значительную вероятность реализации неэффективного проекта и т.д.). Если ЛПР очень «нерасположенное к риску», то скорее всего оно выберет для инвестирования проекты с небольшим, но достаточно безопасным значением (менее рисковым) NPV.
Предполагая, что ЛПР нейтрально по риску, рассмотрим ситуации, связанные с принятием решения в случае единственного и в случае альтернативных (взаимоисключающих) проектов. Решение принимается, исходя из графического отображения распределения вероятностей (частот) NPV. Функция распределения вероятностей NPV чаще применяется для принятия решений, касающихся взаимоисключающих проектов, в то время .как плотность распределения вероятностей лучше применять для выявления моды распределения и для анализа показателей, использующих ожидаемое значение.
Как было отмечено, анализ количественных измерителей риска проводится для такого показателя эффективности инвестиционного проекта, как NPV, но аналогичные расчеты могут быть проведены и для других показателей эффективности.
Ожидаемое значение. Показатель ожидаемого значения представляет собой агрегирование в виде единственного числа всей информации, имеющейся в распределении вероятностей NPV.
Этот показатель является одним из формальных измерителей риска и суммирует информацию, содержащуюся в распределении вероятностей. Это взвешенная средняя значений всех возможных результатов. Веса являются вероятностями, приписываемыми каждому результату:
EV (expected value) = (NPVi, рi).
Ожидаемое значение может быть надежной оценкой риска (то есть использоваться как индикатор риска) только в ситуации, которая повторяется достаточно большое количество раз. Одним из примеров являются риски страховых компаний, которые обычно предлагают одинаковый контракт (страховой полис) большому числу клиентов. В расчетах имитационных проектов (являющихся уникальными по самой своей сути) показатель ожидаемого значения должен всегда использоваться в комбинации с показателем вариации, таким, например, как стандартное отклонение, или, для обеспечения сопоставимости при оценке альтернативных проектов, с коэффициентом вариации.
Ожидаемые потери. Показатель ожидаемых потерь определяется как сумма «взвешенных по вероятностям» отрицательных значений NPV:
EL (expected losses) = (
, рi).
где — отрицательные значения NPV;
m - число отрицательных значений NPV в полученной выборке.
Ожидаемый выигрыш. Показатель ожидаемых потерь определяется как сумма «взвешенных по вероятностям» положительных значений NPV:
EG (expected gains) = (
, рi).
где — положительные значения NPV;
k — число положительных значений NPV в полученной выборке.
Таким образом, ожидаемое значение, безусловно, является суммой ожидаемого выигрыша и ожидаемых потерь:
EV = EG + EL.
Дисперсия и среднее квадратическое отклонение. Дисперсия и среднее квадратическое отклонение показывают насколько велик разброс значений NPV относительно ожидаемого значения.
Дисперсия рассчитывается по формуле:
Среднее квадратическое отклонение определяется как корень из дисперсии:
Дисперсия и среднее квадратическое отклонение являются абсолютными измерителями риска.
Коэффициент вариации. Коэффициент вариации (Var) является широко применяемым показателем проектного риска. Коэффициент вариации определяется по формуле:
Коэффициент вариации является относительной мерой риска, так как абсолютное значение среднего квадратического отклонения нормируется на значение ожидаемого дохода. При положительном математическом ожидании, чем ниже коэффициент вариации, тем меньше разброс показателя эффективности имитационного проекта относительно его ожидаемого значения. К недостаткам этого показателя следует отнести то, что он учитывает и положительные и отрицательные отклонения от ожидаемого значения.
Коэффициент ожидаемых потерь. Показатель коэффициент ожидаемых потерь является показателем, измеряющим величину ожидаемых потерь по отношению к сумме ожидаемых выигрыша и взятых по модулю ожидаемых потерь.
Коэффициент ELR, определенный таким образом, может изменяться от 0 (отсутствие ожидаемых потерь) до 1 (отсутствие ожидаемого выигрыша).
Этот показатель можно считать хорошим измерителем риска, так как он является безразмерной величиной и измеряет риск как возможность потерь.
Вероятность реализации неэффективного проекта.
где m — число отрицательных значений NPV в полученной выборке;
n —число проведенных имитационных экспериментов, (размер выборки).
Вероятность реализации неэффективного проекта вычисляется на основе результатов испытаний, полученных после проведения имитации. Этот показатель также является хорошим критерием оценки рискованности проекта, так как является безразмерным и определяет риск как возможность потерь. В то же время вероятность реализации неэффективного проекта может рассматриваться как измеритель устойчивости проекта. Чем меньше его значение, тем проект устойчивее, и в целом менее рискован.