150306 (580435), страница 2
Текст из файла (страница 2)
Будем решать систему относительно констант К1 и К2 из-за того, что некоторые слагаемые в этих константах известны заранее в стацинарной задаче без тензора момента инерции. Например, константа К1 предположительно имеет слагаемое равное Г. Поэтому система (24) принимает вид:
(25) Умножим третье уравнение на βА2 и сделаем следующие замены:
, (26)
где К3 – дополнительная константа.
Константа Р0 в основном и есть результат, который был известен ранее, тоесть в случае без учета тензора момента инерции.
В результате таких замен получим систему для К3 и К2.
(27)
(28)
Далее выразим первоначальные константы:
(29)
Анализ поля скорости немного труден из-за громоздкости. Значительно интересен другая задача. Ограничимся стационарным движением без наличия в системе градиента давления. Система (24) принимает вид:
(30)
И окончательно получим, при этом заменяя громадную дробь буквой J:
(31)
Посмотрим на вид поля скорости:
Видно, что скорость содержит старый вклад плюс некоторая прибавка, которая появляется из-за влияния тензора момента инерции..
Какой точно вид имеет поле скорости и тензора момента инерции зависит во многом от коэффициентов α и β, то есть от граничных условий для тензора момента инерции.
Нужно сказать, что в основном все вводимые константы не имеют физического смысла, а вводились лишь для простоты окончательного ответа.
Выводы.
В настоящей работе были найдены в общем виде решения нескольких задач. Получили, что поле скорости содержит старый вклад и новый, зависящий от коэффициента диффузии D, времени , и новых вязкостей η12, η21. То есть зависит от наличия в системе тензора момента инерции.
В капиллярных явлениях классические уравнения Навье-Стокса не дают правильных результатов, что было показано в ряде экспериментов [4]. В капиллярных явлениях большую роль играет влияние поверхности или твердой границы. Учет этих факторов в дальнейшем будет учтён и исследован.
Литература
-
С. де Гроот, П. Мазур, Неравновесная термодинамика, Москва, “Мир”,1964
-
M. Шлиомис. К гидродинамике жидкости с внутренним вращением. ЖЭТФ, том 51, 1966, с. 258-265.
-
Ю. Каган, Л.А. Максимов, О полной системе гидродинамических уравнений для газов с вращательными степенями свободы, ЖЭТФ, Т.59, выпуск № 6(12), 1970.255-257
-
Э. Л. Аэро, Н. М. Бессонов, А.Н. Булыгин. Аномальные свойства жидкостей вблизи твердой поверхности и моментальная теория. Колодный журнал, том 60, № 4, 1998, с.446-453.
-
A.V. Zatovsky, A.V. Zvelindovsky. Hydrodynamic fluctuations of a liquid with anisotropic molecules.Physica A,V.298, № 1-2, 237-254.
-
A. Perez-Madrid. J.M. Rubi and. J. Casas-Vazques. On Brownian in fluids with spin. Physica 119A(1983) 212-229
-
V.A. Leontovich, J.Phys. USSR 4 (1941) 499