126137 (578002), страница 2

Файл №578002 126137 (Сопротивление материалов) 2 страница126137 (578002) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Подставляя числовые значения, получим

см.

По этим данным наносим точку – центр тяжести сечения и проводим главные центральные оси и .

2. Вычисляем главные моменты инерции относительно осей и :

; .

Вычисляем момент инерции полосы относительно оси

см4,

где – расстояние от оси до центра тяжести прямоугольника

см.

Аналогично находим момент инерции швеллера относительно оси :

,

где см;

см4.

Главный момент инерции

см4.

Точно также вычисляем главный момент инерции сечения относительно оси .

Для прямоугольной полосы

см4.

Для швеллера

,

где см.

см4.

Суммарный момент инерции относительно оси

см4.

3. Вычерчиваем сечение в масштабе 1:2 с указанием на нем всех осей и размеров (в см) (рис.4).

Рис.4. Сечение, составленное из стандартных профилей проката

Задача 4

Построить эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Проверить несущую способность деревянной балки.

Данные для задачи своего варианта взять из табл. 4 и схемы на рис. 11.

Таблица 4

Вариант

, кН

, кН/м

, кН∙м

м

49

3

6

1

20

12

6

Решение

1. Выполняем расчетную схему согласно исходных данных (рис.5,а).

Отбросим опоры и заменим их влияние на балку опорными реакциями и (рис.5, б).

Определяем опорные реакции.

Составим сумму моментов всех сил относительно точки :

; ,

откуда

кН.

Составим сумму моментов всех сил относительно точки :

; ,

откуда

кН.

Проверка:

.

Следовательно, реакции определены правильно.

2. Балка имеет три участка. Обозначим через расстояние от левого или правого концов балки до некоторого его сечения. Составим выражения для поперечных сил и изгибающих моментов , возникающих в поперечных сечениях балки и по ним установим значения ординат эпюр в ее характерных сечениях.

Участок I :

;

.

При

кН;

.

При м

кН;

кН∙м.

Поскольку уравнение изгибающего момента – уравнение параболы, то для построения эпюры определим еще одно значение момента:

при м

кН∙м.

Участок II :

;

.

При м

кН;

кН∙м.

При м

кН;

кН∙м.

Участок III :

;

.

При

кН;

.

При м

кН;

кН∙м.

3. По полученным ординатам строим эпюры и балки (рис.5, в, г).

Рис. 5. Расчетные схемы к задаче 4

4. Условие прочности деревянной балки записывается в виде

, (1)

где – максимальный изгибающий момент, действующий в поперечном сечении балки. Из эпюры изгибающих моментов имеем кН∙м;

– момент сопротивления сечения при изгибе; для сечения прямоугольной формы

,

где мм м – ширина прямоугольного сечения балки;

мм м – высота прямоугольного сечения балки;

м3;

– допускаемые напряжения при изгибе; для дерева принимаем МПа.

Проверяем несущую способность деревянной балки

Па МПа,

что значительно больше допускаемых напряжений. Следовательно, несущая способность балки не соблюдается.

Ответ: Прочность балки недостаточна.

Задача 5

Для двухопорной балки подобрать сечение двутавра из условия прочности.

Проверить прочность по касательным напряжениям. Построить эпюры и для сечений, в которых и . Нагрузку принять состоящей: 1) из 80% постоянной, коэффициент перегрузки 2) из 20% временной, коэффициент перегрузки .

Данные для задачи своего варианта взять из табл. 5 и схемы на рис. 12.

Таблица 5

Вариант

, кН/м

, кН∙м

м

49

4

4

12

6

Решение

1. Определяем действительные значения нагрузок, действующих на балку, используя метод расчета предельного состояния по несущей способности.

При этом расчетное усилие в балке (в нашем случае и ) определяем как сумму усилий от каждой нормативной нагрузки (постоянной и временной) с учетом соответствующих каждой нагрузке коэффициентов перегрузки. В результате получим

кН∙м;

кН/м.

2. Выполняем расчетную схему согласно исходных данных (рис.6,а).

Отбросим опоры и заменим их влияние на балку опорными реакциями и (рис.6, б). Учитывая симметричность конструкции, получим

кН.

2. Балка имеет три участка. Обозначим через расстояние от левого или правого концов балки до некоторого его сечения. Составим выражения для поперечных сил и изгибающих моментов , возникающих в поперечных сечениях балки и по ним установим значения ординат эпюр в ее характерных сечениях.

Участок I :

;

.

При

кН;

кН∙м.

При м

кН;

кН∙м.

Участок II :

;

.

При м

кН;

кН∙м.

При м

кН;

кН∙м.

Так как на концах участка II поперечная сила меняет свой знак с плюса на минус, то на данном участке изгибающий момент принимает максимальное значение.

Из условия найдем абсциссу сечения, в котором действует изгибающий момент :

,

откуда

м.

Тогда при м

кН∙м.

Участок III :

;

.

При

кН;

.

При м

кН;

кН∙м.

3. По полученным ординатам строим эпюры и балки (рис.6, в, г).

Рис. 3. Расчетные схемы к задаче 3

4. Определяем из условия прочности необходимый момент сопротивления сечения

, (1)

где – максимальный изгибающий момент, действующий в поперечном сечении балки. Из эпюры изгибающих моментов имеем кН∙м;

– момент сопротивления сечения при изгибе;

– допускаемые напряжения при изгибе; принимаем для стали Ст3

МПа.

Из выражения (1) находим требуемый момент сопротивления сечения

м3 см3.

Для подбора сечения балки в виде двутавра используем таблицу сортамента [1, с.283], откуда выбираем для заданного сечения балки двутавр № 40, для которого см3. Перегрузка при этом составит

,

что вполне допустимо (< 3%).

5. Построим эпюры и для сечений, в которых и .

Сечение С (расположено посередине пролета ). В данном сечении действуют только нормальные напряжения, так как поперечная сила равна нулю.

Нормальные напряжения вычисляем по формуле Навье

.

В данном сечении кН∙м, кН.

Данные для двутавра №40: мм; мм; мм; мм; см2; см4; см3.

Обозначим характерные точки по высоте сечения (рис.7).

Точка 1:

мм м;

Па МПа.

Поскольку изгибающий момент положительный, то точки 1 и 2 лежат в сжатой зоне и напряжения в этих точках имеют отрицательный знак.

Точка 2:

мм м;

Па МПа.

Точка 3:

, так как . Ось, проходящая через точку 3, называется нейтральной осью.

Точки 4 и 5. В этих точках значения нормальных напряжений те же, что и в точках 2 и 1, только положительные, так как точки 4 и 5 лежат в растянутой зоне.

МПа;

МПа.

По полученным значениям строим эпюру (рис.7).

Рис.7. Эпюра нормальных напряжений в сечении С

Сечение D. Здесь действует максимальная поперечная сила кН, а изгибающий момент равен кН∙м.

Касательные напряжения вычисляем по формуле

.

В точках 1 и 5 (рис.8).

Точки 2 и 4. Вычисляем статический момент площади поперечного сечения

,

где – отсеченная часть площади поперечного сечения;

– координата центра тяжести отсеченной площади.

м3.

При мм

Па МПа.

При мм

Па МПа.

Точка 3. Это точка, расположенная на уровне нейтральной оси. Для нее имеем [2, с.257]

м3.

Па МПа.

Нормальные напряжения в сечении D

Па МПа (сжатие);

МПа (растяжение).

Строим эпюры напряжений в сечении D (рис.8).

Рис. 8. Эпюра касательных напряжений в сечении А

Максимальное касательное напряжение имеет место на нейтральной линии, то есть МПа.

Допускаемое касательное напряжение по 3-й теории прочности принимаем равным МПа.

Следовательно, для балки двутаврового сечения

МПа<96МПа .

Условие прочности выполняется.

Задача 6

Подобрать сечение равноустойчивой центрально сжатой колонны из двух швеллеров или двутавров (в зависимости от варианта выполняемой задачи), соединенных планками способом сварки. Материал - сталь Ст3, расчетное сопротивление МПа. Данные для задачи своего варианта взять из табл. 7 и рис. 13. Принять .

Вариант

Схема на рис.

, м

, МН

% от

49

V

6

0,6

30

70

1,3

1

Решение

1. Определяем действительное значение нагрузки, действующей на колонну, используя метод расчета предельного состояния по несущей способности.

При этом расчетное усилие в колонне (в нашем случае ) определяем как сумму усилий от каждой нормативной нагрузки (постоянной и временной) с учетом соответствующих данной нагрузке коэффициентов перегрузки. В результате получим

МН кН.

2. Равноустойчивость колонны во всех направлениях будет обеспечена при равенстве моментов инерции относительно осей и . Момент инерции сечения относительно оси не зависит от расстояния , поэтому подбор сечения произведем, учитывая это обстоятельство.

3. Принимая в качестве первого приближения значение коэффициента , находим площадь поперечного сечения колонны

м2 см2.

Из таблиц сортамента [1, с.284] выбираем два швеллера № 30, для которых суммарная площадь сечения равна см2.

Наименьший радиус инерции из той же таблицы для составного сечения

см.

Определяем гибкость колонны

.

Коэффициент из табл.X.1[1] получаем равным .

Повторим расчет, принимая

.

Далее находим

м2 см2.

Из таблиц сортамента [1, с.284] выбираем два швеллера № 20а, для которых суммарная площадь сечения равна см2; см. Гибкость колонны при этом будет равна

.

Коэффициент из табл.X.1 получаем равным .

Еще раз повторим расчет, приняв

.

Далее получаем

м2 см2.

Выбираем швеллер № 18а. Тогда см2; см.

Гибкость

.

Коэффициент продольного изгиба при этом равен .

Еще раз произведем расчет

.

Далее получаем

м2 см2.

Выбираем швеллер № 18. Тогда см2; см.

Гибкость

.

Коэффициент продольного изгиба при этом равен и очень мало отличается от . Расчет заканчиваем и принимаем швеллер № 18, для которого см4; см4; см2.

Момент инерции сечения колонны относительно оси равно

см4.

Момент инерции сечения колонны относительно оси равно

.

Условие равноустойчивости имеет вид

.

Подставляя сюда значения моментов инерции, получим

,

откуда находим расстояние от центра тяжести швеллера до оси

см.

Определяем длину пластин

см

Ответ: Сечение колонны: два швеллера № 18, соединенные пластинами длиной см способом сварки.

Список использованной литературы

1. Степин П.А. Сопротивление материалов. М.: Высшая школа, 1983.

2. Дарков А.В., Шпиро Г.С. Сопротивление материалов. М.: Высшая школа, 1989.

3. Ицкович Г.М. Сопротивление материалов. М.: Высшая школа, 1986.

Характеристики

Тип файла
Документ
Размер
21,43 Mb
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее