123293 (577568), страница 3
Текст из файла (страница 3)
Трибоэлектрическая дефектоскопия основана на измерении электродвижущей силы, возникающей при трении разнородных материалов. Измеряя разность потенциалов между эталонными и испытуемыми материалами, можно различить марки некоторых сплавов.
Электростатическая дефектоскопия основана па использований электростатического поля, в которое помещают изделие. Для обнаружения поверхностных трещин в изделиях из неэлектропроводных материалов (фарфора, стекла, пластмасс), а также из металлов, покрытых теми же материалами, изделие опыляют тонким порошком мела из пульверизатора с эбонитовым наконечником (порошковый метод). При этом частицы мела получают положительный заряд, В результате неоднородности электростатического поля частицы мела скапливаются у краев трещин. Этот метод применяют также для контроля изделий из изоляционных материалов. Перед опылением их необходимо смочить ионогенной жидкостью.
Капиллярная дефектоскопия
Капиллярная дефектоскопия основана на искусственном повышении свето- и цветоконтрастности дефектов относительно неповрежденного участка. Методы капиллярной дефектоскопии позволяют обнаруживать невооруженным глазом тонкие поверхностные трещины и другие несплошности материала, образующиеся при изготовлении и эксплуатации деталей машин.
Метод капиллярной Дефектоскопии может быть применен Для контроля качества заготовок и деталей, изготовленных из любых немагнитных материалов: ауетепитных сталей, цветных сплавов, пластмасс, керамики, – кроме материалов, обладающих пористой структурой. Он основан на принципах капиллярного проникновения индикаторной жидкости (пене-транта) в полость дефекта, адсорбции ее проявляющим составом и люминесценции индикаторного состава в лучах ультрафиолетового света (УФС). В качестве источника УФС используется ртутно-кварцевая лампа типа ДРШ-1000, помещенная в защитный кожух с параболическим рефлектором.
Чувствительность капиллярной дефектоскопии определяется абсолютными размерами дефектов и ограничивается верхним и нижним пределами их выявляемое™. Нижним пределом чувствительности являются различные тупиковые несплошности с шириной рас крытия менее 1 мк, верхним – не более – 0,4 мм любой протяженности. Дефекты с большей шириной раскрытия, а также риски с округлым дном, глубина которых не превышает 70–80% от ее ширины, подвергать капиллярной дефектоскопии нельзя ввиду интенсивного вымывании пенетранта из устья пороков металла.
Методика капиллярной дефектоскопии контролируемого объекта (заготовки, детали, изделия) состоит из следующих последовательно выполняемых операций:
1) прогревание его при температуре 100–120 °С в течение I – 1,5 ч в целях удаления влаги из микротрещин;
2) обезжиривание ацетоном в ультразвуковой ванне в течение т=3– 5 мин;
-
сушка в потоке чистого сжатого воздуха при г= 70–80 °С, давлении» /)=2 кгс/см. т~5–10 мин;
-
пропитка индикаторной жидкостью методом окунания в ультразвуковой ванне, т~7–10 мин (в зависимости от состава);
5) удаление индикаторной жидкости с поверхности объекта распыленной струей горячей воды при 55–65°, давлении р~2 кгс/см2, т~5 мин;
6) сушка в потоке сухого чистого воздуха при 30–40 °С, давлении 2 кгс/см2, т-10с;
7) нанесение проявляющего состава с помощью краскораспылителя. Толщина покрытия примерно 10 мк (контроль визуально по эталону);
8) сушка на воздухе при нормальной температуре, т-5–10 мин;
9) осмотр деталей в сфокусированном пучке УФС через 20–30 мин после нанесения проявляющего состава;
10) удаление белого лакового покрытия ацетоном в ультразвуковой ванне, т=20–30 с. Если дефект выявился недостаточно четко, проверка повторяется через; 30 мин. В качестве индикатора (пенетранта) используется люминесцентная жидкость ЛЖ-6А, включающая в себя люмоген №2 (люминофор ГОСТ 16316–70) – 8 г/л, дитолилметан (ТУ6–09–1220–76) –50%, бутиловый спирт (ГОСТ 6006–73) – 40%, эмульгатор ОП-7 (ГОСТ 8433–57) – 10% жидкость ЛЖ-4 – ксилол (ГОСТ 9949–76) – 23%, керосин (ГОСТ 4753–68) – 75%. люмоген М* 2–1.6 г./л.
Для проявления пенетранта в зависимости от наличия компонентов, можно применять следующие составы, белую нитроэмаль «Экстра» СТУ-30–210–33–63 или ВТУ МХП 693–50) – 300 мл, ацетон (ГОСТ 2603–71) – 400 мл, спирт этиловый (ГОСТ 18300–72) – 500 мл, воду – 500 мл, каолин (ГОСТ 6138–61) – 400 г./л, техническую стеариновую кислоту (ГОСТ 6484 – 64) – 5 г, бензин Б-70 (ГОСТ 1012–72) – 100 мл.
Проявляющий лак (покрытие), приготовленный на основе нитрозшали, сушится на воздухе при нормальной температуре; на основе каолина – в струе горячего воздуха при /-70 – 80 °С.
Пенетрант ЛЖ-4 проявляется с помощью порошка окиси магния. Покрытие на основе нитроэмали удобно в работе, обладает прочной пленкой, не разрушается в процессе осмотра, длительное время хорошо сохраняется на детали, легко удаляется с поверхности эмульгатором ОП-7 и водой (две части ОП-7, восемь частей воды). Покрытие на основе каолина менее прочное. Чешуйчатость покрытия на стеарине затрудняет осмотр пружин и делает следы дефектов нечеткими. Вязкость приготовленного проявляющего лака должна быть 13–15 с по вискозиметру В3=4 (ГОСТ 8420=74) при температуре -4–18–20еС.
Практика показала, что чувствительность капиллярной дефектоскопии повышается, если перед операцией №4 контролируемые детали подвергнуть воздействию ультразвука. Например, после озвучивания витых пружин из проволоки в течение 20–30 с помощью ультразвукового генератора УЗГ-10–22 на пружинах, обработанных в составах ЛЖ-6А, ЛЖ-4, открылось большое число дефектов, в том числе трещин, образовавшихся вследствие межкристаллитной коррозии. Ранее при этой же методике контроля, но без использования ультразвука эти трещины на этих же пружинах не были обнаружены.
Индикаторная жидкость ЛЖ-6А является наилучшим пе-нетрантом. Она обладает более высокой проникающей способностью летко удаляется с поверхности детали с помощью водного раствора эмульгатора ОП-7, не дает заметного светящегося фона на поверхности при проявлении, обладает большой интенсивностью люминесценции как в макро-, так и в микрослоях. Проявляющее покрытие на основе нитроэмали удобно в эксплуатации оно прочно, не разрушается в процессе осмотра и может быть сохранено на детали в течение длительного времени.
При этом методе контроля детали, как правило, осматриваются невооруженным глазом. При осмотре мелких Дефектов, а также в сомнительных случаях рекомендуется применять лупу 2–4-кратного увеличения. В качестве эталона используются образцы контролируемых деталей, изготовленные из того же материала, по той лее технологии, с дефектами, близкими по размерам к нижнему пределу чувствительности метода. Кроме рабочих эталонов должны быть контрольные. Контрольные и рабочие эталоны имеют паспорт с описанием и фотографией имеющихся на них пороков материала, выявленных капиллярным методом.
При оценке допустимости дефектов на заготовках пружин необходимо руководствоваться требованиями, предъявляемыми к проволоке ТУ или ГОСТами. Пружины растяжения контролируются в растянутом виде, надетыми на специальные приспособления, при этом расстояние между витками должно быть не менее 2 мм.
Ультразвуковая дефектоскопия
Ультразвуковая дефектоскопия основана на использовании упругих колебаний, главным образом ультразвукового диапазона частот. Нарушения сплошности или однородности среды влияютна распространение упругих волн в изделии или на режим колебаний изделия. Если например, внутри отливки находится газовая раковина, то колебания, распространяясь по металлу, доходят до нее и меняют свое направление. Индикатор, уловив это изменение, мгновенно показывает, что в отливке дефект.
В технике используются механические колебания в очень широком интервале частот – от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных воин. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождений через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность – возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т.е. таких синтетических материалов, которые находят все большее применение в технике.
Ультразвуковому контролю можно подвергать крупногабаритные детали и заготовки, так как глубина проникновения ультразвука в металл может достигать 8–10 м. Аппаратура для ультразвуковой дефектоскопии сравнительно проста и не требует специальных мер по технике безопасности. Поэтому этот вид контроля очень широко распространяется в самых различных областях народного хозяйства, может использоваться в лабораториях, производственных и полевых условий.
Для реализаций всех методов анализа распространения упругих колебаний необходимо иметь излучатель механических колебаний (вибратор) и индикатор, воспринимающий механические колебания испытуемой среды. Ультразвуковые колебания излучаются и принимаются от испытуемого объекта при помощи пьезоэлектрических пластин из кварца, титаната бария, сульфата лития и других материалов, преобразующих электрические колебания в упругие колебания той же частоты и обратно.
Излучатель и индикатор могут быть совмещены в одном датчике, работающем в импульсном режиме, чередуя свои функции, т.е. работая подобно радиолокатору вначале как излучатель, а затем как индикатор.
Таким образом, основой ультразвукового дефектоскопа является комплекс электронной аппаратуры, которая посылает высокочастотный импульс тока в пьезокристаллы; последние, в свою очередь, преобразуют электрический импульс в механические колебания высокой частоты – ультразвук. Колебания, проходя сквозь деталь, могут отразиться от ее противоположной стенки. Если в отливке есть дефекты к на них попадает луч ультразвука, то он меняет свое направление на дефекте.
К числу основных методов ультразвуковой дефектоскопии относятся: эхометод, теневой, резонансный, велосимметричный (собственно ультразвуковые методы), импедансный и метод свободных колебаний (акустические методы).
Эхометод наиболее универсален. Он основан на посылке в изделие коротких импульсов ультразвуковых колебаний, регистрации интенсивности и времени прихода эхосигналов, отраженных от дефектов. Для контроля изделия датчик эхо-дефектов сканирует его поверхность. С помощью этого метода можно обнаружить поверхностные и глубинные дефекты с различной ориентировкой. Для проведения такого контроля созданы различные промышленные установки. Эхосигналы можно видеть на экране осциллоскопа или регистрировать самозаписывающим прибором, который позволяет повысить надежность, объективность, достоверность обнаружения дефектов, а также производительность и воспроизводимость контроля. Чувствительность эхометода весьма высока. В оптимальных условиях контроля на частоте 2–4 МГц можно обнаруживать дефекты, отражающая поверхность которых имеет площадь около 1 мм.
Теневой метод является весьма распространенным в ультразвуковом контроле.
Этод метод обнаружения оптических неоднородностей в прозрачных преломляющих средах и дефектов отражающих поверхностей (напр., зеркал). Т. м. применяют для исследования распределения плотности воздушных потоков, образующихся при обтекании моделей в аэродинамических трубах, используют для проекции на экран изображений (получаемых в виде оптических неоднородностей) в пузырьковых камерах, в телевизионных системах проекции на большой экран и др. Т. м. предложен нем. учёным А. Тёплером в 1867.
Рис. 1. Образование теней на экране.
В т. м. пучок лучей от точечного или щелевого источника света 1 (рис.) линзой или системой линз и зеркал (2–2') направляется через исследуемый объект (3) и фокусируется на непрозрачной преграде (5) с острой кромкой (на т. н. ноже Фуко), так что изображение источника проектируется на самом краю преграды. Если в исследуемом объекте нет оптич. неоднородностей, то все идущие от него лучи задерживаются преградой. При наличии оптич. неоднородности (4) лучи будут рассеиваться ею и часть их, отклонившись, пройдёт выше преграды. Поставив за ней проекционный объектив (6) или окуляр, можно на экране (7) получить изображение неоднородностей (8) или наблюдать их визуально. Иногда вместо точечного источника света и ножа Фуко применяют оптически сопряжённые решётки (растры), перекрывающие ход лучам при отсутствии на их пути неоднородностей. Применяются также решётки со щелями в виде цветных светофильтров, позволяющие нагляднее определять характер оптич. неоднородностей. Получение более грубой (теневой) картины зон резкого изменения оптич. плотностей объекта возможно без перекрытия лучей ножом Фуко или решётками. Просвечивание объекта двумя оптич. системами, установленными под углом друг к другу, позволяет получать стереоскопич. картину распределения неоднородностей в объекте.
Теневой метод – метод обнаружения оптич. неодно-родностей в прозрачных преломляющих средах и дефектов отражающих поверхностей (напр., зеркал). Впервые предложен в 1857 Л. Фуко (L. Foucault) для отражающих поверхностей. В 1867 А. Тендером (A. Toepier) этот метод был усовершенствован при исследовании прозрачных преломляющих сред. Т, м. наз. также шлирен-методом (от нем. Schliere-оптич. неоднородность, свиль, шлир).
В Т. м. пучок лучей от точечного или щелевого источника света 1 (рис.) линзой или системой линз и зеркал (2–2') направляется через исследуемый объект (3) и фокусируется на непрозрачной преграде (5) с острой кромкой (на т. <н. н о ж е Ф у к о), так что изображение источника проецируется на самом краю преграды. Если в исследуемом объекте нет оптич. неоднородностей, то все идущие от него лучи задерживаются преградой. При наличии оптич. неоднородности (4) лучи будут рассеиваться ею и часть их, отклонившись, пройдёт выше преграды. Поставив за ней проекционный объектив (6) или окуляр, можно на экране (7) получить изображение неоднородностей (8) или наблюдать их визуально. Иногда вместо точечного источника света и ножа Фуко применяют оптически сопряжённые решётки (растры), перекрывающие ход лучам в отсутствие на их пути неоднородноcтей. Применяются также решётки со щелями в виде цветных светофильтров, позволяющие нагляднее определять характер оптич. неоднородностей. Получение менее контрастной картины зон изменения оптич. плотностей объекта возможно без перекрытия лучей ножом Фуко или решётками. Просвечивание объекта двумя оптич. системами, установленными под углом друг к другу, позволяет получать стереоскопии, картину распределения неоднородностей в объекте.
Т. м. применяют при исследованиях распределения плотности воздушных потоков, образующихся при обтекании моделей в аэродинамических трубах, используют для проекции на экран изображений (получаемых в виде оптич. неоднородностей) в пузырьковых камерах, в телевиз. системах проекции на большой экран и др.,
Использованная литература
-
Аврашков Л.Я. Адамчук В.В., Антонова О.В., и др. Экономика предприятия. – М., ЮНИТИ, 2001.
-
Вильям ДЖ. Стивенсон Управление производством. – М., ЗАО «Изд-во БИНОМ», 2000.
-
Грузинов В.П., Грибов В.Д. Экономика предприятия. Учебное пособие. - М.: ИЭП, 2004.
-
Калачева А.П. Организация работы предприятия. - М.: ПРИОР, 2000. – 431 с.
-
Сергеев И.В. Экономика предприятия: Учеб. пособие. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2004. – 304 с.
Крылова Г.Д. Основы стандартизации, сертификации, метрологии. – М.: Аудит, 1998.
-
Медведев А.М. Международная стандартизация – М.: Издательство стандартов, 1988
-
Организация производства и управление предприятием: учебник / под ред. О.Г. Туровца. – М.: ИНФРА-М, 2002. – 528 с.
-
Фатхутдинов Р.А. Производственный менеджмент: Учебник / Р.А. Фатхутдинов. – 3-е изд., перераб. и доп. – М.: Дашков К, 2002. – 472 с.
-
Новицкий Н.И. Организация производства на предприятиях: Учебно-методическое пособие / Н.И. Новицкий. – М.: Финансы и статистика, 2001. – 392 с.
10. Организация производства и управление предприятием: учебное пособие / А.К. Феденя. - Мн.: Тетра-Системс, 2004. – 192 с.