104620 (576711)

Файл №576711 104620 (Методы решения управленческих задач в АПК: регрессионный анализ)104620 (576711)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Управление и маркетинг в АПК»

Методы решения управленческих задач в АПК: регрессионный анализ

Содержание

ВВЕДЕНИЕ

1 Основные методы управления

2 Методы регрессионного анализа

3 Парная линейная регрессия

4 Множественная линейная регрессия

5 Нелинейная регрессия. Коэффициент эластичности

Заключение

Список литературы


ВВЕДЕНИЕ

Методы управления — это система способов воздействия субъекта управления на объект для достижения определенного результата. Теоретическая основа методов управления требует глубокой и тщательной проработки, поскольку наиболее активный и действенный инструмент управления способен при неправильном его использовании привести к отрицательным последствиям. Это тем более усугубляется при деформациях или неверном формировании механизма управления.

Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.

Решение названных задач опирается на соответствующие, приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов, изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы — параметрические — и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.


1 Основные методы управления

Существует несколько подходов к классификации методов управления. Однако к человеку и коллективу имеет смысл применять только такие средства воздействия, которые затрагивают их интересы. Поэтому заслуживает внимания классификация по содержанию воздействия: экономическое, организационное, социально-психологическое. Основой данной классификации являются побудительные мотивы отдельных работников к труду, их потребности и интересы. Именно они определяют поведение людей.

Экономико-математические методы это способы воздействия основанные на поиске экстремумов аналогичных оптимизационных кривых в рамках всей макро и микро экономической системы.

Все экономика – математические методы управления основаны на:

  1. Регрессионный анализ;

  2. На методе Лагранжа;

  3. На методе Гаусса;

  4. На линейном программировании;

  5. Ценно-системное программирование;

  6. На методе ветвей и границ

  7. Основывается с Булевыми переменными;

  8. На дискретном программировании;

  9. На теории графов;

  10. На стохастические (вероятностные)

  11. На теории игр (моделирование в лаборатории)

Экономические методы основаны на социально-экономических законах и закономерностях развития объективного мира — природы, общества и мышления. Использование этих методов опирается на систему экономических интересов личности, коллектива и общества.

Организационно-распорядительные методы базируются на правах и ответственности людей на всех уровнях хозяйствования и управления. Эти методы предполагают использование руководителем власти, ответственности подчиненных и создание системы организационных отношений.

Социально-психологические методы построены на формировании и развитии общественного мнения относительно общественно и индивидуально значимых нравственных ценностей — добра и зла, сути жизни, нравственных начал в обществе, отношений к личности и т. д.


2 Методы регрессионного анализа

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х1, х2,…, хк отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х1, х2,…, хк) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. –regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией ỹ и оценкой ŷ регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

у=2х1,5+ε,

где – ε случайная величина, имеющая нормальный закон распределения, причем Мε = 0 и D ε = σ2. Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х1.5.

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+ε, и представленной на рис. 1

Рисунок 1 – Взаимное расположение истиной f (х) и теоретической ỹ модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида ỹ = β01x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b0+b1x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х1,5, теоретической аппроксимирующей функции регрессии ỹ = β01x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью ỹ объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений ,ỹ = f(хi), где , хi - значение вектора аргументов в i-м наблюдении: ∑(yi - f(хi)2 → min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем ,ỹ = f(хi), среднеабсолютную медианную регрессию ∑ |yi - f(хi )| →min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных хj = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения хj.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у , являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией σ2.

В общем линейная модель регрессионного анализа имеет вид:


Y = Σk j=0βj φj (x1, x2 . . ..,xk)+έ

где φj - некоторая функция его переменных - x1, x2 . . ..,xk , έ - случайная величина с нулевым математическим ожиданием и дисперсией σ2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=β 0+ β1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; β0 и β1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров β0 и β1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

yj= β 0+ β1x+εj.

где εj.- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией σ2 , т. е. М εj. = 0;

D εj.= σ2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров β0 и β1 следует брать такие значения выборочных характеристик b0 и b1, которые минимизируют сумму квадратов отклонений значений результативного признака уi от условного математического ожидания ỹi

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

• инновационная деятельность предприятия;

• планирование ассортимента производимой продукции;

• формирование ценовой политики;

• реклама;

• взаимоотношения с общественностью;

• система сбыта;

Характеристики

Тип файла
Документ
Размер
6,33 Mb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее