86415 (575080)

Файл №575080 86415 (Область определения функции)86415 (575080)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Федеральное агентство по образованию

Среднего профессионального образования

«Профессиональный лицей №15»

Кафедра: Станочник (металлообработка)

Контрольная работа

по курсу: «Математика»

на тему: «Область определения функции»

Выполнил студент гр. Т 102

Бахирев Я.А.

Проверил: Корнилова Н.Г.

Воткинск

2010

1. Решить неравенство

x2 – 3x+5

x-1

Решение.

Для решения неравенств, правая часть которых – нуль, а левая – алгебраическая дробь, т.е., неравенств вида используем метод интервалов.

Обозначим f(x) x2-3x+5 и найдем область определения

x-1

D(f) функция f (x). Для этого определим нули знаменателя функции:

x-1=0, x=1, D(f)=(-; 1) (1;).

Найдем нули функции f (x). Для этого решим уравнение:

x2- 3x+5 x2-3x+5=0 (1)

x-1x-1=0 (2)

Решая уравнение (1), получим:

x2- 3x+5=0, D= (-3)2-4 1 5=9-20<0 – уравнение не имеет решений.

Функция f(x) непрерывна на множестве D (f) и не имеет нулей. Точка 1 разбивает область определения на промежутки знакопостоянства значений функции. Определим знак значения функции f (x) на каждом промежутке знакопостоянства.

Для этого достаточно определить знак значения функции в любой точке промежутка:

f(0) 02-3 0+5 f (2)= 22-3 2+5

    1. 2-1

Отметим, для наглядности, на рисунке промежутки знакопостоянства значений функции f (x) и запишем решения данного неравенства:

f (x) < 0 f (x)>0

f (x) > 0, x c (1;).

Ответ: (1;).

2. Решить неравенство

Log5(3x+1)<2

Решение.

Используя свойства логарифмов положительных чисел

loga a=1

m loga b =loga bm

преобразуем неравенство к простейшему логарифмическому неравенству вида

loga f (x) < loga g(x)

Log5(3x+1)<2, log5(3x+1)<2log55, log5(3x+1)552.

При a>1 функция y=loga t в области определения D(loga), задаваемой неравенством t > 0, монотонно возрастает, то есть, если t1>t2>0, то loga t1 > loga t2. Учитывая это, запишем затем, используем формулу перехода от простейшего логарифмического неравенства к двойному неравенству:

Если a > 1, то

Loga f(x) < loga g(x) 0 < f(x) < g(x)

log5(3x+1) < log552, 0 < 3x + 1 < 52, -1 < 3x < 25 - 1,

11

3 < x < 8, x с 3; 8.

1

Ответ: 3; 8.

3. Найдите все решения уравнения

sinx cosx – v3cosx = 0, принадлежащие отрезку |0; 2 п|.

Решение.

Разложим на множители левую часть уравнения и, учитывая условие задачи, что x с |0; 2п|, в результате получим следующую систему:

sinx cosx – v3cosx=0, cosx(sinx-v3)=0.

|cosx=0

|sinx-v3=0

0<x<2п

Используя формулу решения простейшего тригонометрического уравнения

cosf(x)=0 f(x)=п +пn, n c Z 2

Решим уравнение (1):

cosx=0, x=п+пn, n с Z

Подставляя (4) в двойное неравенство (3), получим:

0< п +пn<2п, п <пn<2п п

222, п < пn < 3п 1 < n < 3

2 п п 2 п, 2 2.

Так как n с Z, то n=0 и n =1. Подставляя n=0 и n=1

в уравнение (4), получим:

sinx=v3 – решений нет, так как - 1<sinx<1 при любых значениях x.

Ответ: п 3п

2, 2.

4. Найдите наименьшее значение функции

f(x)=3x2-18x+7 на промежутке [-5; -1].

Решение.

Функция непрерывна и дифференцируема в каждой точке промежутка |-5; -1|.

Наименьшее (и наибольшее) значения непрерывной на отрезке функции могут достигаться либо на концах отрезка, либо в критических точках, принадлежащих этому отрезку.

(f(x) +g(x)) =f (x) + g (x)

(xm) = mxm-1

C=0

f(x)=(3x2-18x+7) =3 (x2)-18 x +7=3 2x2-1-18 x1-1 +0=6x-18.

Для нахождения критических точек составим и решим уравнение:

f(x)=0

6x-18=0, x=3 c [-5; -1].

Так как критическая точка не принадлежит отрезку [-5; -1], то вычислим значения функции f(x) только на концах отрезка [-5; -1] и из них выберем наименьшее значение:

f(x)=3x2-18x+7,

f(-5)=3 (-5)2-18 (-5)+7=75+90+7=172,

f(-1)=3 (-1)2-18 (-1)+7=3+18+7=28.

Наименьшим из вычисленных значений функции является число 28:

min f(x)=f(-1)=28.

[-5; -1]

Ответ: min f(x)=f(-1)=28.

[-5; -1]

5. Найдите все функции, которые имеют одну и ту же производную: f(x)=x+5sinx

Решение.

Найдем область определения D(f) функции f(x):

D(f)=(- ~;~).

Все функции, имеющие производную, равную f(x), называют множеством всех первообразных F(x) функции f(x) на некотором промежутке (в данном случае, на области определения D(f)=(- ~;~)) или, как это общепринято в математике, неопределенным интегралом функции f(x) на указанном промежутке и (общепринято) обозначают:

| f(x)dx=F(x)+C

Используя свойства неопределенного интеграла

|(f(x) + g(x)) dx= |f(x) dx + |g(x)dx

|af(x) dx=a|f(x)dx

и таблицу неопределённых интегралов

xm+1

| xmdx=m+1 + C, где m= -1

|sinx dx= -cosx + C

получим:

F(x)=| f(x) dx = | (x+5sinx) dx= |xdx + 5| sinx dx= 1+1 + 5 (- cosx) + C=2 -5cosx + C.

x1+1 x2

Ответ: F(x) = 2 -5cosx + C.

Характеристики

Тип файла
Документ
Размер
94,73 Kb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее