86395 (575077), страница 2
Текст из файла (страница 2)
Для цього обчислюємо дисперсії коефіцієнтів A і E:
,
Якщо виконується умова, що
і
,
то робиться висновок, що коефіцієнти незначущі, а значить ними можна знехтувати. В протилежному випадку коефіцієнти є значущі, а значить вони повинні бути враховані при виборі математичної моделі для опису розподілу результатів вимірювань.
Висновок: для нормального закону розподілу результатів вимірювань коефіцієнти A і E рівні нулю, тому якщо на практиці ми отримали А 0 і Е
0 або ними можна знехтувати, то з великою достовірністю можна говорити, що наші результати розподіляються за нормальним законом. В нашому випадку А і Е не дорівнюють нулю, тому, що ми маємо дуже мало вимірювань проте вони є незначущі (0,227
1,049 і 0,717
3,277), а значить ними можна знехтувати. Звідси слідує, що дійсно наші результати розподіляються за нормальним законом розподілу.
Грубі похибки та промахи повинні бути виявленні і відкинуті з результатів вимірювань. З цією метою використовується спеціальний статистичний критерій – критерій Стьюдента.
В роботі використовуємо критерій – правило трьох у.
Початковий статистичний ряд представимо у вигляді такого графіка:
статистичний коефіцієнт середній стьюдент
На графік наносимо середнє значення і межі (границі):
-
верхню Ā+3S;
-
нижню Ā-3S.
Висновок: грубих похибок і промахів не виявлено; початковий ряд є однорідним; приведемо його характеристики: n=45, Ā=269.517 Гц, S=0.055 Гц
Додатково перевіримо наявність грубих похибок використовуючи коефіцієнти Стьюдента. Для цього знаходимо на графіку максимальне і мінімальне значення і обчислюємо квантиль t1 і t2:
Для n = 45 при p = 0.98 tдоп. = 2,4
t1 tдоп., t2
tдоп.
За допомогою коефіцієнтів Стьюдента ми ще раз підтвердили, що грубі похибки і промахи відсутні, статистичний ряд є однорідним.
Експериментальний розподіл отримують у вигляді гістограми.
Порядок побудови гістограми:
-
однорідний ряд розміщуємо в порядку зростання;
-
обчислюємо розмах значень:
;
-
відрізок
розділяємо на
рівних інтервалів:
;
-
обчислюємо ширину інтервалу гістограми:
;
-
обчислюємо межі кожного інтервалу, результати записуємо у таблицю 3.
Табл. 3
Номер вимірювання | Межі інтервалів | nj | pj |
1 | 269,417 ч 269,447 | 7 | 0.155556 |
2 | 269,447 ч 269,477 | 5 | 0.111111 |
3 | 269,477 ч 269,507 | 2 | 0.044444 |
4 | 269,507 ч 269,537 | 19 | 0.422222 |
5 | 269,537 ч 269,567 | 3 | 0.066667 |
6 | 269,567 ч 269,597 | 5 | 0.111111 |
7 | 269,597 ч 269,627 | 4 | 0.088889 |
-
підраховуємо число попадання результатів вимірювань в кожен інтервал nj;
-
обчислюємо імовірності попадань результатів вимірювань в кожен інтервал
;
-
будуємо гістограму:
Для цього на кожному інтервалі будуємо прямокутник площа якого дорівнює pj.
Гістограма – це експериментальний аналог густини розподілу.
Крім гістограми є ще інші варіанти представлення експериментальних розподілів:
-
у вигляді полігону розподілу;
-
у вигляді функції накопичених частот.
Вибір математичної моделі проводиться з урахуванням:
-
вигляду гістограми;
-
факту, що в більшості випадків математичною моделлю виступає функція Гауса (нормальний закон розподілу).
Враховуючи сказане і вигляд гістограми вибір математичної моделі розпочинаємо з функції Гауса:
.
На практиці використовують нормований варіант задання нормального закону розподілу.
Умови нормування:
-
m = 0;
-
у = 1.
Після нормування функція Гауса має такий вигляд:
Гістограму також треба представити у нормованому вигляді. Тобто і
.
Номер інтервалу | Нормовані межі інтервалів | Експериментальні імовірності (рj) | Теоретичні імовірності (pj*) |
1 | -1,818 ч -1,273 | 0.15556 | 0,067 |
2 | -1,273 ч -0,727 | 0.11111 | 0,132 |
3 | -0,727 ч -0,182 | 0.04444 | 0,194 |
4 | -0,182 ч 0,364 | 0.42222 | 0,214 |
5 | 0,364 ч 0,909 | 0.06667 | 0,176 |
6 | 0,909 ч 1,445 | 0.11111 | 0,109 |
7 | 1,445 ч 2 | 0.08889 | 0,05 |
,
Для вирішення цієї задачі використаємо критерій, який так і називається, критерій узгодженості.
Серед них найчастіше використовуються:
-
критерій Пірсона (критерій ч2);
-
критерій Колмогорова;
-
критерій щ2 та інші.
В роботі використовуємо критерій Пірсона.
pj | pj* | (pj | (pj | (pj |
0.15556 | 0.067 | 0.089 | 0.00792 | 0.118 |
0.11111 | 0.132 | -0.021 | 0.00044 | 0.003 |
0.04444 | 0.194 | -0.150 | 0.0225 | 0.116 |
0.42222 | 0.214 | 0.208 | 0.04326 | 0.202 |
0.06667 | 0.176 | -0.109 | 0.01188 | 0.068 |
0.11111 | 0.109 | 0.002 | 0.000004 | 0.00004 |
0.08889 | 0.050 | 0.039 | 0.00152 | 0.03 |
∑ = 0.537 |
Величина служить мірою розбіжності експериментального розподілу і вибраної математичної моделі.
Вибираємо довірчу імовірність .
Обчислюємо рівень значимості .
Обчислюємо число вільності , де k – кількість інтервалів гістограми
.
За цими даними із таблиці розподілу Пірсона .
Висновок: математична модель (функція Гауса) не описує експериментальний розподіл, потрібно вибрати наступну математичну модель, наприклад, якщо експериментальний розподіл є симетричним трикутноподібну, або іншу.
Размещено на Allbest.ru