86305 (575051), страница 2

Файл №575051 86305 (Методика обработки экспериментальных данных) 2 страница86305 (575051) страница 22016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

где s2 – несмещенная оценка генеральной дисперсии;

2.4 Оценка среднего квадратического отклонения

(2.4)

2.5 Определение моды

Модой называют варианту с наибольшей частотой повторений.

Из таблицы 2 находим, что наибольшую частоту n=3 имеют варианты x = -731, x = -703, x = -701, x = -700, x = -697, x = -689, x = -686, x = -681, x = -667.

2.6 Определение медианы

Если количество вариант число четное, то медиана вычисляется по формуле:

МВ=(xk+xk+1)/2 (2.5.)

где xk – пятидесятый член вариационного ряда;

xk+1 – пятьдесят первый член вариационного ряда;

nКоличество вариант и n=2*k

МВ=(xk+xk+1)/2=(-689–689)/2= -689

2.7 Расчет коэффициента вариации

Расчет коэффициента вариации проведем по формуле:

(2.6)

Вывод:

Размах варьирования является простейшей характеристикой рассеяния вариационного ряда.

Для того чтобы охарактеризовать рассеяние значений количественного признака X генеральной совокупности вокруг своего среднего значения, вводят сводные характеристики – генеральную дисперсию и средним квадратическим отклонением.

Коэффициент вариации служит для сравнения величин рассеяния по отношению к выборочной средней двух вариационных рядов: тот из рядов имеет большее рассеяние, у которого коэффициент больше (эта величина безразмерная поэтому он пригоден для сравнения вариационных рядов, варианты которых имеют различную размерность.

В целом числовые характеристики служат для сравнения рассеяния вариационных рядов в сравнении с аналогичными числовыми характеристиками других вариационных рядов.

3. Построение полигона и гистограммы относительных частот

Для построения гистограммы и полигона относительных частот поделим вариационный ряд (табл. 1) на частичные интервалы. Результаты занесем в таблицу 3.

Таблица 3

Номер интервала

I

Частичный интервал xi–xx+1

Сумма относительных частот

wi

Плотность частот

xi

xx+1

1

-805

-780,6

0,01

0,00041

2

-780,6

-756,2

0,02

0,00082

3

-756,2

-731,8

0,03

0,00123

4

-731,8

-707,4

0,12

0,00492

5

-707,4

-683

0,4

0,01639

6

-683

-658,6

0,24

0,00984

7

-658,6

-634,2

0,08

0,00328

8

-634,2

-609,8

0,05

0,00205

9

-609,8

-585,4

0,03

0,00123

10

-585,4

-561

0,02

0,00082

По таб. 3 строим гистограмму относительных частот (рис. 1).

Полигон получаем соединением вершин столбцов гистограммы. (рис. 1) Полигон получаем соединением вершин столбцов гистограммы.

Рис 1.

Вывод: Полигон и гистограмму – графики статистического распределения строят для наглядности относительных частот в выборке.

4. Построение эмпирической функции распределения

Эмпирическая функция распределения выборки находится по формуле:

(4.1)

где nx – число вариант меньших х;

n объем выборки.

По формуле (4.1) построим эмпирическую функцию распределения.

Для более точного и правильного построения возьмем середины интервалов:

F(x)

Интервал

0

X<

-792,8

0,01

-792,8

-768,4

0,02

-768,4

-744

0,03

-744

-719,6

0,05

-719,6

-695,2

0,08

-695,2

-670,8

0,12

-670,8

-646,4

0,19

-646,4

-622

0,27

-622

-597,6

0,41

-597,6

-573,2

0,67

-573,2

-548,8

1

x>

-548,8

Вывод:

Итак, эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности

5. Статистическая проверка гипотезы о нормальном распределении с помощью критерия Пирсона или Колмагорова

Проверку проводим с помощью критерия Пирсона.

В этом задании, с помощью критерии Пирсона проверим гипотезу о нормальном распределении генеральной совокупности, с этой целью будем сравнивать эмпирические и теоретические частоты.

– Среднее арифметическое значение

– Количество вариантов

– Шаг интервалов

– Оценка среднеквадратического отклонения.

Вычислим данные по таблице:

I

ni

Xi

X (i+1)

Zi

Z (I+1)

1

1

-805

-780,6

-2,7340

-0,5

-0,469

3,1

1,4226

0,3226

2

1

-780,6

-756,2

-2,7340

-2,1140

-0,469

-0,408

6,1

4,2639

0,1639

3

4

-756,2

-731,8

-2,1140

-1,4941

-0,408

-0,285

12,3

5,6008

1,3008

4

7

-731,8

-707,4

-1,4941

-0,8741

-0,285

-0,099

18,6

7,2344

2,6344

5

26

-707,4

-683

-0,8741

-0,2542

-0,099

0,1141

21,31

1,0322

31,7222

6

33

-683

-658,6

-0,2542

0,3658

0,1141

0,2939

17,98

12,5473

60,5673

7

14

-658,6

-634,2

0,3658

0,9857

0,2939

0,4131

11,92

0,3630

16,4430

8

8

-634,2

-609,8

0,9857

1,6057

0,4131

0,4713

5,82

0,8166

10,9966

9

3

-609,8

-585,4

1,6057

2,2256

0,4713

0,4927

2,14

0,3456

4,2056

10

3

-585,4

-561

2,2256

0,4927

0,5

0,73

7,0588

12,3288

СУММА

100

100

40,6851

140,6851

X2набл=40,685

Контроль: 140,685–100=40,685

Исходя из требований, чтобы вероятность попадания критерия в критическую область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости .

Таким образом, правосторонняя критическая область определяется неравенством , а область принятия нулевой гипотезы – неравенством .

Уровень значимости = 0,05;

По таблице критических точек распределения χ² (приложение 3), по уровню значимости α = 0,05 и числу степеней свободы K=10–3=7 находим критическую точку правосторонней критической области χ²кр (0,05; 7) = 14,1.

Вывод: Так как X2набл> X2кр, то нулевую гипотезу отвергают, значит гипотезу о нормальном распределении отвергают.

6. Расчет асимметрии и эксцесса

Асимметрия – отношение центрального момента 3-го порядка к кубу среднего квадратического отклонения.

, где

Эксцесс – характеристика «крутости» рассматриваемой случайной величины.

, где

Значение ХВ, вычисляем по формулам:

,

где С – Ложный нуль (варианта, которая имеет наибольшую частоту).

,

где h – шаг (разность между двумя соседними вариантами);

(условный момент второго порядка);

(условный момент первого порядка);

(условная варианта).

Расчеты занесем в таблицу 7:

Xi

Ni

Ui

XB

M1

M2

m3

m4

AS

EK

-805

1

-2,73

-684,67

0,30

1,06

23,97

3433,28

4193007,72

0,25

12,71

-780,6

1

-2,11

-756,2

4

-1,49

-731,8

7

-0,87

-707,4

26

-0,25

-683

33

0,37

-658,6

14

0,99

-634,2

8

1,61

-609,8

3

2,23

-585,4

3

2,85

Вывод:

Т.к. асимметрия положительна то ‘длинная часть’ кривой распределения расположена справа от математического ожидания или мода.

Т.к. Эксцесс больше нуля, то кривая распределения имеет более высокую и ‘острую’ вершину, чем нормальная кривая.

7. Построение доверительного интервала для математического ожидания и среднего квадратического отклонения

Доверительный интервал для математического ожидания (с вероятностью ) находят как:

(7.1)

где n – объем выборки;

t – случайная величина имеющее распределение Стьюдента находим по приложению 1.

s – исправленное среднее квадратическое отклонение;

– выборочное среднее;

Найдем интервал:

по приложению 1 находим t = 1.984 при = 0.95 и n = 100;

=-684,67; s = 38,19;

Получаем

-692,25

Доверительный интервал для среднего квадратического отклонения

(с надежностью ) находят как:

при q<1 (7.2)

при q>1 (7.3)

где q находят по приложению 2, по заданным n и ;

Исходя из приложения 2, n = 100 и = 0.95 находим q=0.143;

Поэтому интервал находим по формуле (7.2):

38.19(1-0.143) 38.19(1+0.143) 35,58(1+0.143)


32.73 43.65

Вывод:

Итак, с надежностью 0,95 неизвестное математическое ожидание ‘а’ находится в доверительном интервале -692,25’ находиться в доверительном интервале 32.73 43.65.

Вывод

Для представления генеральной совокупности я исследовала выборку, которая имеет объём 100 элементов.

Я нашла:

размах варьирования R=244;

среднеарифметическое значение статистического ряда =-684,67;

несмещенную оценку генеральной дисперсии s2=1458,99;

среднее квадратическое отклонение s=38,19;

медиану МВ=-689 и коэффициент вариации V= 5,58%.

С надежностью 0.95 оценил математическое ожидание в интервале

-692,25 а -677,09

и среднее квадратическое отклонение в интервале

32,73 43,65

Выборка имеет варианты x = -731, x = -703, x = -701, x = -700, x = -697, x = -689, x = -686, x = -681, x = -667, которые встречаются 3 раза.

На рис. 1 построила гистограмму и полигон относительных частот. По рис. 1 можно выдвинуть гипотезу о нормальном распределении генеральной совокупности.

После проверки гипотезы о нормальном распределении с помощью критерия Пирсона при =0.05, я отвергла ее. Из этого следует, что расхождения между практическими и теоретическими частотами значимо.

Асимметрия as=0,25. Из этого следует, что правое крыло функции более вытянуто относительно ее моды.

Эксцесс ek=12,71. Из-за того, что у эксцесса положительный знак, эмпирическая функция распределения острее по сравнению с теоретическим распределением.

Список литературы

  1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 2001.

  1. Гмурман В.Е. Теория вероятностей и математическая статистика.

М.: Высшая школа, 2001.

Характеристики

Тип файла
Документ
Размер
1,48 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6590
Авторов
на СтудИзбе
297
Средний доход
с одного платного файла
Обучение Подробнее