86079 (574994)

Файл №574994 86079 (Умножение матрицы. Теория вероятности)86079 (574994)2016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"СИБИРСКАЯ АКАДЕМИЯ ГОСУДАРСТВЕННОЙ СЛУЖБЫ"

ИНСТИТУТ ПЕРЕПОДГОТОВКИ СПЕЦИАЛИСТОВ

(кафедра)

КОНТРОЛЬНАЯ РАБОТА

По дисциплине: Математика

Выполнил:

Специальность: ФиК

Группа: 08306

Проверил: ____________

НОВОСИБИРСК 2010


Задание 1

Выполнить умножение матриц АВ-1С

Решение.

В определитель

2 -1 1

1 2 -1 = 17

-1 2 2

Допишем к исходной матрице единичную матрицу справа:

2 -1 1 1 0 0

1 2 -1 0 1 0

-1 2 2 0 0 1

Вычтем 1-ую строку из всех строк, которые находятся ниже неё.

Это действие не противоречит преобразованиям матрицы.

2 -1 1 1 0 0


1 2 -1 0 1 0

-1 2 2 0 0 1

Вычтем 2-ую строку из всех находящихся ниже неё

2 -1 1 1 0 0

0 2,5 -1,5 -0,5 1 0

0 1,5 2,5 0,5 0 1

Приведем все коэффициенты на главной диагонали матрицы к 1. Поделим каждую строку матрицы на коэффициент этой строки находящийся на главной диагонали, если он не равен 1.

Вычтем 3-ю строку из всех, что выше неё

1 -0,5 0 0,38 0,09 -0,15

0 1 0 -0,06 0,29 0,18

0 0 1 0,24 -0,18 0,29

Вычтем 2-ю

1 0 0 0,35 0,24 -0,06

0 1 0 -0,06 0,29 0,18

0 0 1 0,24 -0,18 0,29

Переместим единичную матрицу из правой части в левую

0,35 0,24 -0,06 обратная матрица


-0,06 0,29 0,18

0,24 -0,18 0,29

1

АВ

А (2×3) и В (3×3) → D (2×3)

D11 = (2) × (0,35) + (-1) × (-0,06) +0× (0,24) = 0,76

D12 = (2) × (0,24) + (-1) × (0,29) +0× (0,18) = 0, 19

D13 = (2) × (-0,06) + (-1) × (0,18) +0× (0,29) = - 0,3

D21 = (1) × (0,35) + (-2) × (-0,06) + (-1) × (0,24) = 0,23

D22 = (1) × (0,24) + (-2) × (0,29) + (-1) × (-0,18) = - 0,16

D23 = (1) × (-0,06) + (-2) × (0,18) + (-1) × (0,29) = - 0,71

D = 0,76 0,19 - 0,3

0,23 - 0,16 - 0,71

АВ-1С

0,35 0,24 -0,06 обратная матрица

-0,06 0,29 0,18

0,24 -0,18 0,29

Е = (2×2)

Е11 = (0,76) × (-2) + (0, 19) × (-1) + (-0,3) × (2) = - 2,31

Е12 = (0,76) × (1) + (0, 19) × (2) + (-0,3) × (-1) = 1,44

Е21 = (0,23) × (-2) + (-0,16) × (-1) + (-0,71) × (2) = - 1,72

Е22 = (0,23) × (1) + (-0,16) × (2) + (-0,71) × (-1) = 0,62

Ответ: -2,31 1,44

-1,72 0,62


Задание 2

Решения системы уравнений методом Крамера

Решение.

Главный определитель

Найдем определитель трех дополнительных матриц.

1-й определитель для вычисления Х1

2-й определитель для вычисления Х2

3-й определитель для вычисления Х3

Х1 = Δ1/Δ ≈ 1

Х2 = Δ2/Δ ≈ 2

Х3 = Δ3/Δ ≈ - 2

Задание 3

Теория вероятности (события).

Известно, что курс евро к рублю может возрасти с вероятностью 0,55, а курс доллара к рублю может возрасти с вероятностью 0,35. Вероятность того, что возрастут оба курса, составляет 0,3. Найти вероятность того, что курс евро или доллара по отношению к рублю возрастёт.

Решение.

Пусть событие А состоит в том, что курс евро по отношению к рублю возрастет, а событие В в том, что возрастет доллар.

Тогда:

Р (А) = 0,55; Р (В) = 0,35; Р (АзВ) = 0,3

Вероятность того, что курс евро или доллара по отношению к рублю возрастет по теореме сложения вероятностей составляет:

Р (АиВ) = Р (А) +Р (В) - Р (АзВ) = 0,55+0,35-0,3 = 0,6

Задание 4

Теория вероятности (события).

В специализированную больницу поступают в среднем 70% больных с заболеванием К, остальные - с заболеванием М. Вероятность полного излечения болезни К равна 0,8, а болезни М равна 0,9. Больной, поступивший в больницу, был выписан здоровым. Какова вероятность того, что он болел болезнью К?

Решение.

Пусть А событие состоящее в том, что выписанный болел болезнью К, а В - гипотеза, что он болел М.

70+30 = 100;

Р (В) = 30/100 = 0,3;

Р (А) = 70/100 = 0,7

Р = 0,3×0,9+0,7×0,8 = 0,27+0,56 = 0,83

Ответ: вероятность, что заболеваемость К = 0,83.

Задание 5

Теория вероятности (случайные величины).

В ящике 12 белых и 18 черных шаров. Составить закон распределения количества белых шаров среди четырех, вынутых наугад. Построить многоугольник распределения. Найти математическое ожидание и дисперсию случайной величины.

Решение.

Р бел = 12/30 = 0,4;

Р черн = 18/30 = 0,6;

S = 0,4+0,6 = 1;

М (х) = (0,4) × (12) + (0,6) × (18) = 15,6;

2 2 2 2

D (х) = (0,4)×(12)+(0,6)×(18)- М(х) = 252-(15,6) = 8,64;

D(х) = 8,64


Задание 6

Математическая статистика.

Для 40 магазинов одной торговой сети, находящихся в разных населенных пунктах, определена стоимость корзины продуктов первой необходимости (в рублях):

125,2

120,2

131,3

121,6

107,8

143,8

111,5

124,8

117,3

127,5

114,6

118,2

128,7

115,6

109,1

119,8

125,9

112,3

119,6

125,7

104,4

123,9

118,1

123,7

110

114,6

115,2

111,4

113,2

102,6

112,1

109,4

113

114,5

109,5

125,9

120,2

148

114,7

109,7

Построить интервальную группировку данных по шести интервалам равной длины и соответствующую гистограмму. Найти среднюю стоимость корзины и исправленную дисперсию для выборки. Построить доверительные интервалы надежности 95% и 99% для стоимости продуктовой корзины.

Решение.

Генеральная совокупность - все представители = 40 магазинов одной сети.

Выборочная совокупность:

(102,6→104,4→107,8→109,1→109,4→109,5→109,7→110) → (111,4→111,5→112,1→112,3→113→113,2→114,5→114,6→114,6→114,7→115,2→115,6→117,3) →118,1→118,2→119,6→119,8→120,2→120,2→121,6→123,7→123,9→124,8→125,2) → (125,7→125,9→125,9→127,5→128,7→131,3) → (143,8→148)

n = 40 - объем совокупности

когда изменчивость высокая создают искусственный шаг между классами, он называется классовый промежуток,

К = max - min / 6 = 7,6 - классовый интервальный промежуток.

интервал

Xi (полусумма между началом и концом интервала)

F (частота)

102,6 - 110,2

110,3 - 117,8

117,9 - 125,4

125,5 - 133

133,1 - 140,6

140,7 - 148,2

106,114,05

121,65

129,25

136,85

144,45

8

13

11

6

0

2

Хср = ∑х/n,

Если данные собраны в вариационный ряд, то среднее можно получить как:

Хср = FXi / n =

8×106,4+13×114,05+11×121,65+6×129,25+0×136,85+2×144,45 / 40 = 118,4, Х ср = 118,4.

2 2 2 2 2 2 2 2

S = ∑FXi - (∑FXi) / n = 8×106,4+13×114,05+11×121,65+6×129,25+0×136,85+2×144,45 -

2

- 1 / n (8×106,4+13×114,05+11×121,65+6×129,25+0×136,85+2×144,45) = 564414,84 – 560837,124 = 3577,7;

S = 3577,7.

2

Варианта = S / n-1;

2

Вар. = √Вар, Вар.= √3577,7 / 39 = 9,6;

Доверительный интервал - границы прогноза

Хср - t × вар. / √n < Xср. ген. < Хср + t × вар. / √n;

По таблице:

Для n = 40 при вероятности р = 0,95 значение t - критерия Стьюдента = 2,022;

При р = 0,99, t = 2,708

Для р = 0,95:

118,4 - 2,022 × 9,6/√40 < Хср. ген. < 118,4+2,022 × 9,6/√40,115,3 < Хср. ген. < 121,5, 118,4 ± 3,1,Для р = 0,99:

118,4 - 2,708 × 9,6/√40 < Хср. ген. < 118,4+2,708 × 9,6/√40,114,3 < Хср. ген. < 122,5, 118,4 ± 4,1

Задание 7

Решить задачу линейного программирования.

Решение.

Избавимся от неравенств введя в ограничения 1,2,3 неотрицательные балансовые переменные S1,S2,S3.

2Х1 + Х2 + S1 = 4

Х1 + 2Х2 + S2 = 6

Х1 + Х2 + S3 = 3

Х1, Х2,S1,S2,S3 ≥ 0

Ищем в системе ограничений базисные переменные, это переменные, которые входят только в одно уравнение системы ограничений и притом с единичным коэффициентом.

Из последней системы ограничений можно выделить базисные переменные S1,S2,S3.

Теперь мы можем сформировать начальную симплекс-таблицу (расширенная матрица системы ограничений с некоторыми дополнительными столбами и строками.

Базисная

переменная

Х1

Х2

S1

S2

S3

Решение

Отношение

S1

2

1

1

0

0

4

4/2 = 2

S2

1

2

0

1

0

6

6/1 = 6

S3

1

1

0

0

1

3

3/1 = 3

Q

3

2

0

0

0

0

-------

Разрешающий столбец выбираем по max положительному коэффициенту строки Q, он соответствует переменной Х1 - она будет введена в базис в последующей итерации. (Итерация - одно из ряда повторений какой-либо математической операции, использующее результат предыдущей аналогичной операции)

Разрешающая строка выбирается по min из всех отношений, у нас она соответствует БП Х3, именно она будет выведена из базиса, её место займет Х1.

Для всех таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

Последняя итерация выглядит следующим образом:

Базисная

переменная

Х1

Х2

S1

S2

S3

Решение

Отношение

S2

0

0

1

1

-3

1

-------

Х1

1

0

1

0

-1

1

-------

Х2

0

1

-1

0

2

2

-------

Q

0

0

1

0

1

7

-------

Ответ: Оптимальное значение Q (X) = 7 достигается в точке с коэффициентами Х1 = 1; Х2 = 2.

Характеристики

Тип файла
Документ
Размер
591,34 Kb
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее