85856 (574931)
Текст из файла
Вариант №9
№1. Решить систему линейных уравнений по правилу Крамера, с помощью обратной матрицы
-
По правилу Крамера.
;
б) С помощью обратной матрицы.
Алгебраические дополнения:
№ 2. Вычислить определитель
а) С помощью теоремы Лапласа. б) Предварительно упростив, получив нули в какой либо строке (столбце).
№3. Найти ранг матрицы
-
С помощью элементарных преобразований
б) Найти ранг матрицы методом окаймления миноров
Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2=
, отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2. Их всего два (можно добавить второй столбец или четвертый). Вычисляем их:
Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.
№4. Дана система уравнений:
a) исследовать на совместимость б) Найти общее решение методом Гауса и записать два частных.
Частные решения:
№5. Найти фундаментальную систему решений однородной системы уравнений
№ 6
-
Найти площадь ABC
Найдем векторное произведение
:
б) Составим уравнение плоскости ABC:
Объем параллелепипеда, построенного на трёх некомпланарных векторах
, равен абсолютной величине их смешанного произведения, т.е. 18. Объем тетраэдра
e) Найти величину плоского угла при вершине С плоскости ABC
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















