85756 (574907), страница 2
Текст из файла (страница 2)
Д
ля того, чтобы перейти от функции к функции воспользуемся формулой:
П
олучим выражения для ∆2y0:
∆5y0 = -y0 + 5y1 – 10y2 + 10y3 – 5y4 + y5
∆4y0 = y0 - 4y1 + 6y2 - 4y3 + y4
∆3y0 = -y0 + 3y1 – 3y2 + y3
∆2y0 = y0 - 2y1 + y2
Подставим эти значения в функцию:
Сравним это значение с вычисленным значением производной путем дифференцирования интерполяционного многочлена G(x):
при x3 = 1.8
Значения производной равны, следовательно, вычисления сделаны верно.
Задача 8
Методом наименьших квадратов для таблично заданной g(x) получить аппроксимирующие степенные полиномы нулевой, первой, второй и третьей степеней (Pi(x), i = 0, 1, 2, 3) и изобразить их на одном графике.
Решение.
Составим таблицу степеней x и xy
| i | x | y | x2 | x3 | x4 | x5 | x6 | xy | x2y | x3y |
| 1 | 0.3 | -0.02 | 0.09 | 0.027 | 0.0081 | 0.00243 | 0.000728999 | -0.006 | -0.0018 | -0.00054 |
| 1 | 0.8 | 0.604 | 0.64 | 0.512 | 0.4096 | 0.32768 | 0.262144 | 0.4832 | 0.38656 | 0.309247 |
| 1 | 1.3 | 0.292 | 1.69 | 2.197 | 2.8561 | 3.71293 | 4.8268 | 0.3796 | 0.493479 | 0.641523 |
| 1 | 1.8 | -0.512 | 3.24 | 5.832 | 10.4976 | 18.8956 | 34.0122 | -0.9216 | -1.65888 | -2.98598 |
| 1 | 2.3 | -1.284 | 5.29 | 12.167 | 27.9840 | 64.3634 | 148.035 | -2.9532 | -6.79236 | -15.6224 |
| 1 | 2.8 | -2.04 | 7.84 | 21.952 | 61.4656 | 172.103 | 481.89 | -5.712 | -15.9936 | -44.782 |
| 6 | 9.3 | -2.96 | 18.79 | 42.687 | 103.22 | 259.405 | 669.026 | -8.73 | -23.5666 | -62.4401 |
Составим системы уравнений:
Откуда a0 = -0.93621; a1 = 3.89576; a2 = -2.8954; a3 = 0.488001
А
ппроксимирующий степенной полином 3-й степени имеет вид:
P3(x) = -0.93621 + 3.89576x – 2.8954x2 + 0.488001x3
Откуда a0 = -0.0710314; a1 = 0.989486; a2 = -0.624589;
Аппроксимирующий степенной полином 2-й степени имеет вид:
P2(x) = -0.0710314 + 0.989486x – 0.624589x2
Откуда a0 = 0.974118; a1 = -0.946742;
Аппроксимирующий степенной полином 1-й степени имеет вид:
P1(x) = 0.974118 – 0.946742x
6a0 = -2.96
Откуда a0 = -0.493333;
Аппроксимирующий степенной полином 0-й степени имеет вид:
P0(x) = -0.0493333
И
зобразим полученные полиномы на графике:
Задача 9
Для аппроксимирующего полинома третьей степени P3(x) получить аналитические выражения ΔnP3(x), n = 0, 1, 2, 3, 4 и все конечно-разностные разностные кривые изобразить на одном графике.
Решение
Обозначим на графике все конечно-разностные кривые:
ΔP3(x)
Δ2P3(x)
P3(x)
Δ3P3(x)
Δ4P3(x)
Задача 10
Вывести квадратурные формулы для вычисления определенных интегралов с пределами [0, 1] и [-1, 1] от подынтегральных функций f(t), принадлежащих классу степенных многочленов степеней 0, 1, 2, 3. Вывод проделать для трех случаев использование в квадратурных формулах численных значений подынтегральных функций:
в
) заданы значения функции в точках, обеспечивающих получение формул наивысшей алгебраической степени точности.
Решение
Значение определенного интеграла найдем, исходя из формулы:
где w1, w2 — некоторые коэффициенты
t
1, t2 — точки, плавающие внутри интервала интегрирования.
w(t) = (t-t1)(t-t2) = C0 + C1t + C2t2 = 0
C2 = 1
Домножив уравнения на соответствующие коэффициенты получим:
2C0 + 2/3 = w1 (C0 + C1t1 + t12) + w2 (C0 + C1t1 + t22)
2C0+ 2/3 = 0
C0 = -1/3
П
одставляя полученные значения в первую систему, получим:
Квадратурная формула:
Задача 11
С помощью квадратурных формул, полученных в задаче 10, вычислить определенный интеграл от степенного представления интерполяционного многочлена Лагранжа (Ньютона), полученного в задаче № 6 в пределах от x0 до x0 +3h, и сравнить его с аналитически вычисленным значением определенного интеграла по первообразным многочлена.
Решение
Используем степенное представление интерполяционного многочлена Лагранжа из задачи 6
Для перехода к интегралу с канонической формой используем линейное преобразование: x = α + βt.
Составим систему уравнений:
Подставив x = 1.05 + 0.75t, получим многочлен Лагранжа от переменной t:
L
(t) = 0.24975t3 - 0.80325t2 - 0.49575t + 0.537253
Учитывая, что dx = βdt, получим:
Применим квадратурную формулу, полученную в задаче №10
Д
ля сравнения вычислим аналитически значение интеграла:
Так как результаты совпали, значит, вычисления произведены верно.
Задача 12
Оценить погрешность определенного интеграла от функции sin(x) в пределах [0,2/3π] по квадратурной формуле наивысшей алгебраической степени точности, полученной в задаче № 10в, по сравнению с аналитически точным. Проделать то же самое над усеченным степенным рядом, представляющим sin(x), в который x входит со степенью не выше третьей.
Решение
П
ерейдем от пределов [0,2/3 π] к пределу [-1,1]: для этого воспользуемся линейным преобразованием x= α + βt . Составить систему
Учитывая, что dx = βdt, получим:
Применим квадратурную формулу:
Вычислим аналитически:
Найдем погрешность вычисления:
Проделаем те же операции над усеченным степенным рядом, представляющем sin(x):
Перейдем от пределов [0; 2π/3] к пределам [-1; 1], для этого используем линейное преобразование x = α +βt. Составим систему уравнений:
Учитывая, что dx = βdt, получим
П
рименим квадратурную формулу, получим
Н
айдем погрешность вычисления
Задача 14
Степенными полиномами Чебышева Ti относительно переменной x (|x| < 1) являются решениями линейного разностного уравнения второго порядка:
Ti+2 - 2x Ti+1 + Ti = 0,
с начальными условиями T0 = 1 и T1 = x.
Найти аналитическое выражение и вычислить значения полинома Чебышева i-й степени, если
и i = 4. Проверить вычисления непосредственно по заданной рекуррентной формуле. Найти положение нулей и экстремумов у многочленов Чебышева в общем виде и для заданных выше x и i. Оценить модуль максимально возможного значения полинома в точках экстремумов.
Р
ешение.
Исходя из того, что
xi = |yi| надо найти T4 т.е. для i = 4
Из Ti+2 - 2xTi+1 + Ti = 0 следует, что
T2 = 2xT1 - T0
T3 = 2xT2 - T1 = 2x(2xT1 - T0) - T1
T4 = 2xT3 - T2 = 2x(2x(2xT1 - T0) - T1) - 2xT1 + T0 = 8x3T1 - 4x2T0 - 4xT1 + T0
Подставим значение T0 = 1 и T1 = x
T4 = 8x4 - 4x2 - 4x2 + 1 = 8x4 - 8x2 + 1
Найдем значения x:
T4 = 0.99980
Проверим по заданной рекуррентной формуле:
T2 = 2·0.00490·0.00490 - 1 = -0.9999
T3 = 2·0.00490·(-0.9999) - 0.00490 = -0.01469
T4 = 2·0.00490·(-0.01469) + 0.9999 = 0.99980
Нули функции находятся, как решения биквадратного уравнения:
8x4 - 8x2 + 1 = 0, где
x1 = 0.9238795
x2 = -0.9238795
x3 = 0.3826834
x4 = -0.3826834
Чтобы найти экстремумы найдем
Задача 16
Выравнивание по всей длине с течением времени температуры T(x, t) на тонком однородном хорошо теплоизолированном стержне описывается дифференциальным уравнением в частных производных с начальным распределением температуры (в градусах Цельсия) по длине стержня в 6 равномерно расположенных с шагом h точках.
T(x0, 0) = T0, T(x1, 0) = T1, …, T(x5, 0) = T5; (Ti = 100·yi ˚C).














