63958 (573481), страница 4

Файл №573481 63958 (Абстрактные цифровые автоматы) 4 страница63958 (573481) страница 42016-07-29СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

4) Найдем в таблице 1.12 эквивалентные состояния и удалим их (заменим на представителя класса эквивалентности).

Если выходной сигнал возле b0 доопределить y1, то окажется, что в данной таблице переходов находится 3 эквивалентных состояния (b0,b11,b02). Заменив класс эквивалентности одним представителем (b0), получим окончательную таблицу переходов (табл.1.13).

Таблица 1.12

x1

x2

Y

b0

b01

b02

y1

b01

b21

b22

y1

b02

b01

b02

y1

b11

b01

b02

y1

b12

b21

b22

y2

b21

b01

b02

y2

b22

b11

b12

y1

Таблица 1.13.

x1

x2

У

b0

b01

b0

y1

b01

b21

b22

y1

b12

b21

b22

y2

b21

b01

b0

y2

b22

b0

b12

y1

Изложенные методы взаимной трансформации автоматов Мили и Мура показывают, что при переходе от автомата Мура к автомату Мили число состояний автомата не изменяется, тогда как при обратном переходе число состояний в автомате Мура, как правило, возрастает.

Таким образом, эквивалентные между собой автоматы могут иметь различное число состояний, в связи с чем возникает задача нахождения минимального (с минимальным числом состояний) автомата в классе эквивалентных между собой автоматов. Существование для любого абстрактного автомата эквивалентного ему абстрактного автомата с минимальным числом внутренних состояний впервые было доказано Муром.

1.6 Минимизация числа внутренних состояний автомата

Алгоритм Ауфенкампа-Хона.

В основу метода минимизации состояний автомата положена идея разбиения всех состояний исходного, абстрактного автомата на попарно не пересекающиеся классы эквивалентных состояний и замене каждого класса эквивалентности одним состоянием (представителем данного класса). Образующийся в результате этих преобразований минимальный автомат имеет столько же состояний, на сколько классов эквивалентности разбиваются исходные состояния.

Два состояния автомата am и as называются эквивалентными (am =as), если  (am,X) =  (as,X) для всех возможных входных слов длины X.

Если am и as не эквивалентны, они различимы. Более слабой эквивалентностью является K-эквивалентность. Состояния am и аs K-эквивалентны, если  (am, Хk) =  (as, Хk) для всех возможных входных слов длины К. При минимизации числа внутренних состояний автомата Мили S={X,Y, А, ,, а0} используется алгоритм Ауфенкампа-Хона:

1. Находят последовательные разбиения 1,2,…,k,k+1, множества А на классы одно-, двух-,., К-, (К+1) - эквивалентных состояний до тех пор, пока на каком-то (К+1) шаге не окажется, что k=k+1. В этом случае К-эквивалентные состояния являются эквивалентными. Число шагов К, при котором k=k+1 не превышает N-1, где N - число внутренних состояний автомата.

2. В каждом классе эквивалентности  выбирают по одному элементу (представителю класса), которые образуют множества А' состояний минимального автомата S'.

3. Функцию переходов ' и выходов ' автомата S' определяют на множестве A'xX.

Для этого в таблице переходов и выходов вычеркивают столбцы, соответствующие не вошедшим в множество А' состояниям, а в оставшихся столбцах таблицы переходов все состояния заменяются на эквивалентные из множества А', (на представителей).

4. В качестве а'0 выбирается одно из состояний, эквивалентное состоянию а0. В частности, удобно принять само состояние а0.

При минимизации автомата Мура вводится понятие 0-эквивалентности состояний и разбиения множества состояний на 0-классы: 0-эквивалентными называются любые, одинаково отмеченные выходными сигналами, состояния автомата Мура. В качестве примера рассмотрим минимизацию автомата Мура, заданного таблицей переходов и выходов (Таблица 1.14).

Таблица 1.14

У

y1

y1

y3

y3

y3

y2

y3

y1

y2

y2

y2

y2

А

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

x2

a10

a12

a5

a7

a3

a7

a3

a10

a7

a1

a5

a2

x2

a5

a7

a6

a11

a9

a11

a6

a4

a6

a8

a9

a8

Выполним разбиение 0:

0={В1, В2, В3};

B1={a1, a2, a8}, В2={а6, а9, а10, а11, а12}, В3={а3, a4, a5, a7}.

Построим таблицу разбиения 0:

У

B1

В2

В3

А

a1

a2

a8

a6

a9

a10

a11

a12

a3

а4

a5

a7

х1

В2

В2

В2

В3

В3

B1

В3

B1

В3

В3

В3,

В3

х2

В3

В3

В3

В2

В2

B1

B2

B1

В2

В2

В2

В2

Выполним разбиение 1:

1={С1, С2, С3, С4};

C1={a1, a2, a8}, С2={а6, а9, а11}, С3={ а10, a12}, С4={а3, а4, a5, a7}.

Построим таблицу разбиения 1:

У

С1

С2

С3

С4

А

a1

a3

a8

a6

a9

a11

a10

a12

a3

а4

a5

a7

х1

С3

С3

С3

С4

С4

С4

C1

C1

С4

C4

С4

С4

х2

С4

С4

С4

С2

С2

С2

C1

C1

С2

С2

С2

С2

Выполним разбиение 2.

1={D1, D2, D3, D4};

D1={a1, a2, a8}, D2={а6, а9, а11}, D3={ а10, a12}, D4={а3, а4, a5, a7}.

Разбиение 2 повторяет разбиение 1 - процедура разбиения завершена.

Выберем произвольно из каждого класса эквивалентности D1, D2, D3, D4 по одному представителю - в данном случае по минимальному номеру: A'={a1, а3, a6, а10}.

Удаляя из исходной таблицы переходов "лишние" состояния, определяем минимальный автомат Мура (табл.1.15.)

Таблица 1.15.

У

y1

y3

y2

y2

А

a1

a3

a6

a10

х1

a10

a3

a3

a1

х2

a3

a6

a6

a1



Вывод

В процессе выполнения контрольной работы мы ознакомились с основными понятиями абстрактных цифровых автоматов; типами абстрактных автоматов; способами задания абстрактных автоматов; связью между моделями Мили и Мура; эквивалентными автоматами и эквивалентными преобразованиями автоматов; минимизацией числа внутренних состояний автомата и алгоритмом Ауфенкампа-Хона - привели примеры.



Список литературы

1. Самофалов К.Г., Романкевич А.М., и др. Прикладная теория цифровых автоматов. - Киев. “Вища школа" 1987.

2. Соловьев Г.Н. Арифметические устройства ЭВМ. - М. “Энергия”. 1978.

3. Савельев А.Я. Прикладная теория цифровых автоматов - М. “Высшая школа”. 1987.

4. Каган Б.М. Электронные вычислительные машины и системы. - М. Энергоатомиздат. 1985.

5. Лысиков Б.Г. Арифметические и логические основы цифровых автоматов. - Минск. “Вышэйшая школа”. 1980.

Характеристики

Тип файла
Документ
Размер
3,85 Mb
Учебное заведение
Неизвестно

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее