48793 (572225)
Текст из файла
Контрольная работа №2
Задание 1
Решение задач линейного программирования графическим методом
Цель задания: приобрести практические навыки решения задач линейного программирования графическим методом.
Индивидуальное задание
Найти максимум и минимум линейной формы графическим методом по исходным данным задачи ЛП (таблица 1).
Таблица 1
| Номер варианта | Целевая функция | Ограничения задачи линейного программирования |
| 6 | | |
Решение задачи
Построим область L допустимых решений. Заменим в каждом неравенстве задачи знак неравенства на знак равенства. Получим уравнения прямых:
x1+4x2=8, 2x1-x2=4, x1+x2=1,x1=0,x2=0.
Область L определяется как общая часть полуплоскостей, соответствующих неравенствам ограничений (рисунок 1).
L
Рисунок 1. Графическое решение задачи ЛП
В данной задаче она составляет многоугольник ABCD. Для нахождения экстремума функции Z=-2x1+4x2 , строим разрешающую прямую, приравнивая линейную форму нулю:Z=0. Строим градиент целевой функции C(2;4).
Минимальное значение функция принимает в точке D(4,5;0,7) , а максимальное в точке B.
Анализ решения задачи линейного программирования
В результате решения задачи линейного программирования были получены минимум и максимум рассматриваемой функции, вследствие того, что область ограничений представляет собой замкнутый многоугольник, если бы фигура области ограничений была не замкнута, функция могла бы не иметь одного или обоих экстремумов в заданной области.
Задание 2
Решение задач ЛП симплексным методом с использованием симплекс-таблиц
Цель задания: закрепить теоретические сведения и приобрести практические навыки решения задач ЛП симплекс-методом.
Индивидуальное задание
Найти максимум линейной формы
Z=c1x1+c2x2
при условиях:
Данные представлены в таблице 2.
| Номер варианта | A11 | A12 | A21 | A22 | A31 | A32 | B1 | B2 | B3 | C1 | C2 |
| 6 | 4 | 1 | 3 | 6 | 8 | 7 | 43 | 74 | 76 | 7 | 4 |
Приведем задачу ЛП к каноническому виду:
-Z’= -Z = -7x1 -4x2
при ограничениях
x3, x4, x5 — дополнительные переменные.
Во втором уравнении дополнительная переменная введена с коэффициентом -1 и уравнение умножено на -1.
Постановка задачи в виде матрицы системы ограничений
Решение задачи ЛП с составленными симплекс-таблицами
Единичные векторы A3, A4, A5 образуют базис трехмерного пространства (m=3). Решать эту задачу алгоритмом симплекс-метода можно, поскольку переменные x3, x4, x5 входят с коэффициентом +1 соответственно в первое, второе и третье ограничения. Таким образом, x3, x4, x5 – базисные переменные, а остальные небазисные. Полагая небазисные переменные в ограничениях равными нулю, получим исходное допустимое базисное решение:
X0=(0,0,43,-74,76).
Заполняем исходную симплекс-таблицу (таблица 2)
Таблица 2. Нулевая симплекс-таблица
| i | Бx | Сб | A0 | -7 | -4 | 0 | 0 | 0 | T |
| A1 | A2 | A3 | A4 | A5 | |||||
| 1 | A3 | 0 | 43 | 4 | 1 | 1 | 0 | 0 |
|
| 2 | A4 | 0 | 74 | -3 | -6 | 0 | 1 | 0 | |
| 3 | A5 | 0 | 76 | -8 | 7 | 0 | 0 | 1 | |
| 4 | 0 | 7 | 4 | 0 | 0 | 0 |
Так как среди разностей есть положительные, то X0 не является оптимальным решением. Строим новое базисное решение.
.
Выводим из базиса вектор A3,так как
.
Разрешающий элемент таблицы x12 выделим кругом, а разрешающий столбец и строку стрелками.
Таблица 3. Первая симплекс-таблица
| i | Бx | Cб | A0 | -7 | -4 | 0 | 0 | 0 | T |
| A1 | A2 | A3 | A4 | A5 |
| ||||
| 1 | A1 | -7 |
| 1 |
|
| 0 | 0 | |
| 2 | A4 | 0 |
| 0 |
|
| 1 | 0 | |
| 3 | A5 | 0 | 162 | 0 | 9 | 2 | 0 | 1 | |
| 4 |
| 0 |
|
| 0 | 0 |
Так как среди разностей есть положительные, то оптимальное решение не получено. Строим новое базисное решение.
.
Выводим из базиса вектор A4,так как
.
Таблица 4. Вторая симплекс-таблица
| i | Бx | Cб | A0 | -7 | -4 | 0 | 0 | 0 | T |
| A1 | A2 | A3 | A4 | A5 | |||||
| 1 | A2 | -4 | 43 | 4 | 1 | 4 | 0 | 0 | |
| 2 | A4 | 0 | 736 | 21 | 0 |
| 1 | 0 | |
| 3 | A5 | 0 | -225 | -36 | 0 | -34 | 0 | 1 | |
| 4 |
| -9 | 0 |
| 0 | 0 |
Так как все разности во второй таблице (таблица 4) неположительны:
, т получено оптимальное решение:
min(-Z)= -225.
Тогда max(Z)= -min(-Z)= 225
Анализ оптимального плана.
Использование переменной x1 нецелесообразно.
Задание 3
Моделирование и решение задач ЛП на ЭВМ
Цель задания: приобрести практические навыки моделирования задач ЛП и их решения симплекс-методом с использованием прикладной программы SIMC.
Индивидуальное задание
Предприятие может работать по 5-ти технологическим процессам, причем кол-во единиц выпускаемой продукции по разным ТП за ед. времени соответственно равны 300, 260, 320, 400, 450 шт. затраты производственных факторов в гривнах при работе по разным ТП в течение 1 ед. времени и располагаемые ресурсы этих факторов в табл.5.
Найти программу максимального выпуска продукции.
Таблица 5.
| факторы | Способ производства | Ресурсы, грн | |||||
| 1 | 2 | 3 | 4 | 5 | |||
| Сырье | 12 | 15 | 10 | 12 | 11 | 1300 | |
| Эл.энергия | 0,2 | 0,1 | 0,2 | 0,25 | 0,3 | 30 | |
| Зарплата | 3 | 4 | 5 | 4 | 2 | 400 | |
| Накладные расходы | 6 | 5 | 4 | 6 | 4 | 800 | |
Математическая интерпретация задачи
Исходные массивы, записанные в виде, пригодном для решения задачи по программе SIMC
5
4
12.000 15.000 10.000 12.000 11.000 < 1300.000
0.200 0.100 0.200 0.250 0.300 < 30.000
3.000 4.000 5.000 4.000 2.000 < 400.000
6.000 5.000 4.000 6.000 4.000 < 800.000
300.000 260.000 320.000 400.000 450.000
1
Рисунок 2. Исходные массивы для решения задачи
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.














