10221 (567362), страница 2
Текст из файла (страница 2)
Существует несколько способов определения скорости света: астрономический и лабораторные методы.
Впервые скорость света измерил датский ученый Ремер в 1676 г., используя астрономический метод. Он засекал время, которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты. Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного (по астрономическим понятиям) дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Зная расстояние и время запаздывания Ио он вычислил скорость света, которая оказалась огромной, примерно 300 000 км/с.
В конце XIX-начале XX вв. ряд новых опытов заставил вновь вернуться представлению об особых световых частицах - фотонах. Было установлено, что свет имеет двойственную природу, сочетая в себе как волновые свойства, так и свойства, присущие частицам.
В одних явлениях, таких как интереренция, дифракция и поляризация, свет ведет себя, как волна, в других фотоэффект, эффект Комптона) - как поток частиц (фотонов). По современным представлениям свет имеет двойственную корпускулярно-волновую природу (в связи с этим принято говорить о корпускулярно-волновам дуализме): в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц или корпускул (фотонов). Согласно современным представлениям электромагнитная природа света - это лишь одна разновидность проявления света. Другая разновидность характеризуется его квантовой природой.
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая принципами дополнительности и неопределенности, а также противоречие целого ряда экспериментов применяемым в начале XX в. теориям привели к новому этапу развития физических представлений окружающего мира, ив особенности микромира — созданию квантовой механики, описывающей свойства микрочастиц с учетом их волновых особенностей. Ее создание и развитие охватывают периоде 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX в. и связано прежде всего с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.
Необходимость вероятностного подхода к описанию микрочастиц — важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательной, что не имеет смысла.5
Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном ограниченном объеме.
Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.
5. Поясните, что такое Вселенная, каковы ее размеры, какие объекты ее составляют и какие модели развития Вселенной Вам известны. Какие эмпирические подтверждения развития Вселенной?
Слово «вселенная» возникло как калька греческого термина «ойкумена», т. е. заселенная земля. Уже здесь видна его первоначальная равнозначность выражению «весь свет» или «мир». Но такое понимание вселенной давно устарело.
Размеры Вселенной:
Масса – 5,976*1024 кг;
диаметр – 12756 км;
плотность – 5,518 г/см3;
объем – 1,083*1012 км2;
площадь поверхности – 510,2 млн. км2.
Модель раздувающейся Вселенной точно совпадает с общепринятым описанием наблюдаемого мира начиная с 10-30 с после начала расширения. Только в эти микроскопические доли секунды отличие моделей. Как и модель Большого взрыва, модель инфляционной Вселенной полагает, что Начало было 10-15 млрд. лет назад из сингулярного (сверхорячего и чверхплотного) состояния и продолжается сейчас. Эти модели объяснили и реликтивное излучение, и красное смещение в спектрах далеких галактик, и первоначальное содержание легких элементов6.
6. Дайте представление о фазовых переходах, приведите примеры фазовых переходов разных типов (родов). Что за явления – сверхтекучесть и сверхпроводимость?
Фазами называют различные однородные части физико-химических систем. Однородным является вещество, когда все параметры вещества одинаковы во всех его элементарных объемах, размеры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концепциях. Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний – жидком, твердом или газообразном. В зависимости от внешних условий система может находиться в равновесии либо в одной фазе, либо сразу в нескольких фазах.
В окружающей нас природе мы особенно часто наблюдаем фазовые переходы воды. При переходе воды в пар происходит сначала испарение – переход поверхностного слоя жидкости в пар, при этом в пар переходят только самые быстрые молекулы: они должны преодолеть притяжение окружающих молекул, поэтому уменьшаются их средняя кинетическая энергия и, соответственно, температура жидкости. наблюдается в быту и обратный процесс – конденсация.
Во время фазового перехода температура не меняется, но меняется объем системы. Фазовые переходы бывают нескольких родов.
Изменения агрегатных состояний вещества называются фазовыми переходами 1-го рода, если:
-
температура постоянна во время всего перехода;
-
меняется объем системы;
-
меняется энтропия системы.
Чтобы произошел такой фазовый переход, нужно данной массе вещества сообщить определенное количество тепла, соответствующего скрытой теплоте превращения.
Фазовые переходы 2-го , 3-го и т.д. родов связаны с порядком тех производных термодинамического потенциала, которые испытывают конечные изменения в точке перехода.
Явление о сверхтекучести, открытое Капицей наблюдали и раньше, отмечая странное поведения гелия при температуре около 2К, но только он подробно исследовал и описал его.
Атомы сверхтекучего гелия ведут себя согласованно, как единое целое, беспорядка в этой системе нет, энтропия равна нулю. Невозможно сообщить какой-то части сверхтекучего гелия тепло – все его атомы одинаковы подтверждены воздействию. Невозможен и обмен энергией между атомами – все они в наинизшем состоянии, и вязкость среды равна нулю.
Исследования в области низких температур, первоначально имевшие чисто практическую направленность, привели к многим крупным открытиям. В 1911 г. Камерлинг-Оннес обнаружил, что при температуре 7,2К сопротивление свинцового проводника внезапно снизилось в миллионы раз и практически исчезло. Это странное явление получило название сверхпроводимости. В одном из экспериментов в сделанном из чистого свинца кольце был наведен ток в несколько сотен ампер. Через год оказалось, что ток все еще продолжает идти в кольце, и величина его не изменилась, т.е. сопротивление винца было равно нулю7.
7. Какими методами удалось изучить состав живой клетки и ее молекулярное строение? Каковы основные положения и значение клеточной теории в развитии биологии?
За 3 мрд. лет на нашей планете живое вещество развивалось в несколько миллионов видов, но все они – от бактерий до высших животных – состоят из клеток. Клетка – организованная часть живой материи: она усваивает пищу, способна существовать и расти, может разделяться на две, каждая из которых содержит генетический материал, идентичный исходной клетке.
В 1665 г. Гук издал книгу «Микрография, или некоторые физиологические описания мельчайших тел посредством увеличительных стекол», где сообщил об открытии им клеточного строения живого вещества (тогда же он впервые употребил термин «клетка»). Фактически же Гук увидел только клеточные стенки, отличающиеся размерами и толщиной. После Гука клетки, вернее, их оболочки, так как микроскопы были несовершенны, обнаруживали у разных растений и в тканях животных.
Клеточная теория, или цитология сложилась в течение ХIХ в. в результате микроскопических исследований, когда появились более совершенные микроскопы (в последнее время их все чаще называли биологией клетки).
Ботаник Маттис Шлейден (1804-1881), изучая растительные ткани, установил, что они имеют клеточную природу. Используя его обобщения, немецкий биолог Теодор Шванн (1810-1882), исследовавший животные ткани, в своем классическом труде «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) впервые сформулировал основные положения о клеточном строении всех организмов и образовании всех организмов и образовании клеток.
Было подробно изучено и клеточное деление. Вирхов дополнил клеточную теорию Шлейдена и Шванна утверждением: все клетки образуются в результате деления других клеток (1855). Затем установили, что хранение и передача наследственных признаков осуществляется с помощью клеточного ядра (Вирхов, Геккель). При большом увеличении микроскопов в клетках открыли постоянные специализированные структуры (органоиды, или органеллы) – пластиды и митохондрии.
В начале ХХ в. многие биологи повторяли опыты австрийского естествоиспытателя Иоганна Менделя (1822-1884), открывшего еще 1865 г. существование индивидуальных наследственных факторов (генов). Все это способствовало развитию цитогенетики. Современная клеточная теории исходит из единства расчлененности многоклеточного организма на клетки и его целостности, основанной на взаимодействии клеток8.
Открытие клетки принадлежит английскому ученому Р. Гуку, который, просматривая под микроскопом тонкий срез пробки, увидел структуры, похожие на пчелиные соты, и назвал их клетками. Позже одноклеточные организмы исследовал голландский ученый Антони ван Левенгук. Клеточную теорию сформулировали немецкие ученые М. Шлейден и Т. Шванн в 1839 г. Современная клеточная теория существенно дополнена Р. Биржевым и др.
Основные положения современной клеточной теории:
Клетка - основная единица строения, функционирования и развития всех живых организмов, наименьшая единица живого, способная к самовоспроизведению, саморегуляции и самообновлению;
Клетки всех одноклеточных и многоклеточных организмов сходны (гомологиины) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;
Размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;
В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.
Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира. Благодаря клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов. Клетка - самая мелкая единица организма, граница его делимости, наделенная жизнью и всеми основными признаками организма. Как элементарная живая система, она лежит в основе строения и развития всех живых организмов. На уровне клетки проявляются такие свойства жизни, как способность к обмену веществ и энергии, авторегуляция, размножение, рост и развитие, раздражимость.9
8. Какие виды изменчивости Вам известны, в чем их сходства и отличия? Какая форма изменчивости дает исходный материал для естественного отбора в природе? Докажите, что естественный отбор является направляющим фактором эволюции
Определенные виды изменчивости являются периодическими. Они-то и есть «вибрации», которые определяют уровни бытия в их иерархии. Во Вселенной все суть живое, не считая «периферии» - нижнего края шкалы «водородов». Соответственно, и все по-своему разумно. Степень «разумности» определяется частотой «вибраций».
Изменчивость - способность организмов приобретать новые признаки и свойства в процессе онтогенеза.