5074 (567262), страница 2

Файл №567262 5074 (Организация радиационной безопасности на АЭС) 2 страница5074 (567262) страница 22016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Безопасность атомной станции должна обеспечиваться за счет последовательной реализации принципа глубоко эшелонированной защиты, основанного на применении системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и системы технических и организационных мер по защите барьеров и сохранению их эффективности и непосредственно по защите населения.

Система барьеров включает: топливную матрицу, оболочки ТВЭЛов, границу контура теплоносителя, охлаждающего активную зону, герметичное ограждение локализующих систем безопасности. Состояние каждого из этих барьеров контролируется в процессе эксплуатации АЭС и поддерживается на уровне, соответствующем требованиям действующих нормативных документов по безопасности АЭС.

Снижение мощности эквивалентной дозы от внешнего ионизирующего излучения до уровня, не превышающего допустимый во всех режимах работы АЭС, осуществляется экраном биологической защиты.

Защитный материал выбирают с учетом защитных и механических свойств, а также его стоимости, массы и объема. Помимо защитных свойств, материал должен быть конструкционно-прочным; иметь высокую радиационную и термическую стойкость, огнестойкость, жаростойкость, химическую инертность; не выделять под действием нагрева и облучения ядовитых и взрывоопасных с резким запахом газов; сохранять стабильные размеры. Необходимо также учитывать простоту монтажа, возможность механической обработки, стоимость и доступность материалов.

Защитные свойства материалов от нейтронного излучения определяются их замедляющей и поглощающей способностью, степенью активации. Быстрые нейтроны наиболее эффективно замедляются веществами с малым атомным номером, такими как графит и водородсодержащие вещества (легкая и тяжелая вода, пластмассы, полиэтилен, парафин). Для эффективного поглощения тепловых нейтронов применяются материалы, имеющие большое сечение поглощения: соединения с бором — борная сталь, бораль, борный графит, карбид бора, а также кадмий и бетон (на лимонитовых и других рудах, содержащих связанную воду).

Гамма-излучение наиболее эффективно ослабляется материалами с большим атомным номером и высокой плотностью (свинец, сталь, бетон, магнетитовые и другие руды, свинцовое стекло).

На АЭС в качестве материала для биологической защиты обычно используется бетон, металлические конструкции и вода.

Рассмотрим некоторые материалы, получившие широкое применение в качестве защиты от нейтронного и гамма-излучения.

Вода используется не только как замедлитель нейтронов, но и как защитный материал от нейтронного излучения вследствие высокой плотности атомов водорода. После столкновений с атомами водорода быстрый нейтрон замедляется до тепловой энергии, а затем поглощается средой. При поглощении тепловых нейтронов ядрами водорода по реакции H(n,γ)D, возникает захватное γ-излучение с энергией E =2,23 МэВ. Захватное γ-излучение можно значительно снизить, если применить борированную воду. В этом случае тепловые нейтроны поглощаются бором по реакции B(n,α)Li, а захватное излучение имеет энергию E = 0,5 МэВ. Конструктивно водяную защиту выполняют в виде заполненных водой секционных баков из стали или других материалов.

Полиэтилен (р = 0,93 г/см3, nн= 7,92 ·1022 ядер/см3) — термопластичный полимер (CnH2n), является лучшим замедлителем, чем вода. Полиэтилен можно применять на таких участках защиты, где его температура будет меньше температуры размягчения, равной 368К. Полиэтилен применяют в виде листов, лент, прутков и т.п. При использовании полиэтилена необходимо учитывать его высокий коэффициент линейного расширения (в 13 раз больше, чем у железа). С повышением температуры полиэтилен размягчается, а затем загорается, образуя двуокись углерода и воду. Защитные свойства от γ-излучения примерно такие же, как у воды. Для уменьшения захватного γ-излучения в полиэтилен добавляют борсодержащие вещества

Из других водородсодержащих веществ используют различные пластмассы (полистирол, полипропилен) и гидриды металлов.

Графит находит широкое применение в реакторах на тепловых нейтронах в качестве замедлителя и отражателя. Он обладает достаточной прочностью, легко поддается механической обработке, используется в защите в виде блоков. Однако стойкость графита к окислению низка, в результате чего он становится хрупким. Кроме того, при облучении нейтронами кристаллическая решетка графита повреждается, что отражается на его физических свойствах. Для повышения стойкости графита к окислению до температуры 800 — 1250 K производится покрытие его поверхности пленкой из фосфатного стекла. При температуре свыше 400 K графит используют в инертной среде.

Карбид бора хрупок, обладает высокой термостойкостью. Рабочая температура на воздухе до 800 K, в инертной среде до 1800 K. При поглощении тепловых нейтронов в результате ядерной реакции B(n,α)Li образуются гелий и литий. Скопление гелия в порах при высокой температуре может привести к увеличению давления в газовой полости, вследствие чего возникают трещины в материале. Присутствие лития в борсодержащем материале снижает его коррозионные свойства.

Содержание бора в легированной стали не должно превышать 3%, при более высоком его содержании сталь становится хрупкой и плохо обрабатывается. С использованием бора изготовляют дисперсионные материалы, например бораль, борный графит и др.

Бораль изготовляют из листов алюминия, между которыми засыпают порошкообразную смесь карбида бора с алюминием. Затем всю массу прокатывают в горячем состоянии. Лист бораля толщиной 0,44 см с массовым содержанием B4C до 30% снижает плотность потока тепловых нейтронов в 1000 раз. Бораль обладает удовлетворительной теплопроводностью, его плотность сохраняется до температуры 1100 K. Бораль хорошо обрабатывается, легко сваривается в атмосфере гелия.

Борный графит гораздо дешевле бораля. Как и бораль, он обладает хорошими поглощающими свойствами и малой остаточной активностью. Лист из борного графита толщиной 2,5 см (с массовым содержанием бора до 4%) ослабляет плотность потока тепловых нейтронов в 400 раз.

Железо используется для защиты в виде изделий из стали и чугуна (прокат, поковка, дробь). Сталь (углеродистая и с легирующими элементами) является основным конструкционным материалом для изготовления узлов реакторных установок (корпус реактора, тепловая и радиационная защита, трубопроводы, различные механизмы, арматура для защиты из других материалов и т.п.). Она относится к материалам, в которых хорошо сочетаются конструкционные и защитные свойства. Масса зашиты из стали от γ-излучения на 30% больше массы эквивалентной свинцовой защиты, однако повышенный расход материала компенсируется лучшими конструкционными характеристиками стали. В качестве защиты от нейтронного излучения сталь более эффективна, чем свинец. Однако при использовании стали в качестве конструкционного материала для реактора необходимо учитывать и ее недостатки. Под действием тепловых нейтронов железо, являющееся основной составной частью стали, активируется с образованием радионуклида 55Fe (Т1/2=45,1 сут), излучающего фотоны (Eγ1= 1,1 МэВ; Eγ2=1,29 МэВ). Кроме того, при захвате нейтронов атомами железа возникает захватное γ-излучение (Eγ =7,7 МэВ). Иногда при несовершенной конструкции реакторной установки захватное γ-излучение, возникающее в железных конструкциях тепловой защиты, является определяющим при выборе зашиты от излучения. К недостаткам железа как защитного материала относится плохое ослабление нейтронов промежуточных энергий. При защите следует обращать внимание на со держание в стали марганца, тантала и кобальта, так как наведенная γ-активность определяется в основном содержанием этих элементов стали. Сталь, подвергающаяся облучению нейтронами высокой плотности, должна содержать не более 0,2% марганца, а тантал и кобальт могут находиться лишь в виде следов.

Захватное γ-излучение и остаточную активность можно в значительной степени уменьшить, если добавить в сталь борное соединение и получить борную сталь. Бор интенсивно поглощает тепловые нейтроны, при этом образуются легко поглощаемое γ-излучение (E =0,5 МэВ) и α-частицы. Борная сталь по механическим свойствам хуже конструкционной стали. Она очень хрупка и трудно поддается механической обработке.

Свинец используется для защиты в виде отливок (очехлованных стальными листами), листов, дроби. Из имеющихся дешевых материалов свинец обладает наиболее высокими защитными свойствами от γ-излучения. Его целесообразно использовать при необходимости ограничения размеров и массы защиты. Применение свинца ограничивается низкой температурой плавления (600 К). Защитные материалы вольфрам, тантал могут использоваться в горячих зонах, в которых применение свища исключается. Использовать эти металлы для защиты промышленных реакторов нецелесообразно, так как они крайне дороги.

Кадмий хорошо поглощает нейтроны с энергией меньше 0,5 эВ. Листовой кадмий толщиной 0,1 см снижает плотность потока тепловых нейтронов в 109 раз. При этом возникает захватное γ-излучение с энергией до 7,5 МэВ. Кадмий не обладает достаточно хорошими механическими свойствами. Поэтому чаще применяют сплав кадмия со свинцом, который наряду с хорошими защитными свойствами от нейтронного и γ-излучений имеет лучшие механические свойства по сравнению со свойствами чистого кадмия.

Бетон является основным материалом для защиты от излучений, если масса и размер защиты не ограничиваются другими условиями. Бетон, применяющийся для защиты от излучений, состоит из заполнителей, связанных между собой цементом. В состав цемента в основном входят окислы кальция, кремния, алюминия, железа и легкие ядра, которые интенсивно поглощают γ-излучение и замедляют быстрые нейтроны в результате упругого и неупругого столкновений. Ослабление плотности потока нейтронов в бетоне зависит от содержания воды в материале защиты, которое определяется в основном типом используемого бетона. Поглощение нейтронов бетонной защитой может быть значительно увеличено введением соединения бора в состав материала защиты. Поглощающая способность γ-излучения зависит от плотности бетона, которая может составлять 2,1 — 6,6 т/м3. Наибольшая плотность бетона получается при использовании в качестве заполнителя железного скрапа (стальных шариков, проволоки, обрезков стального лома), наименьшая — при использовании песка и гравия. Конструкция бетонной защиты может быть монолитной (для больших реакторов) или состоять из отдельных блоков (небольших реакторов). Для снижения выхода захватного γ-излучения в бетон вводят вместо заполнителя до 3% B4C.

В зависимости от применяемых заполнителей и условий эксплуатации бетона выделяют его следующие типы:

Строительный бетон (р=2,2 —2,3 т/м3) используют для изготовления защиты, которую эксплуатируют при низкой температуре или при наличии системы охлаждения. Заполнителем является гранит, известняк и др. Для затвердения бетона применяют воду.

Лимонитовые бетоны (р=2,4 — 3,2 т/м3) изготовляют на лимонитовых заполнителях.

(2FeO3·SH2O — 65%, H2O — 12%)

При T=500 K теряют 25% связанной воды.

Серпентинитовый бетон (р=2,5 — 2,7 т/м3) изготовляют из серпентинитовых (3MgO·SiO2·2H2O с примесями Al2O3, FeO, Fe2O3) заполнителей. При Т=780 К теряет связанную воду. Рабочая температура бетона 750 K. Для улучшения защитных свойств бетона добавляют в виде заполнителя железную дробь или металлический песок.

Бруситовый бетон (р=2,1 — 2,2 т/м3) изготовляют из Mg(OH)2 с примесями CaO и SiO2, содержащих до 30% воды, которая теряется при Т=650 К. Рабочая температура бетона Т = 600 К.

Магнетитовые бетоны (р = 3 т/м3) изготовляют из магнетитовых (Fe3O4) заполнителей. Если вода содержится только в виде воды затвердевания, бетон не отличается от обычного строительного бетона. Бетон используется при T=300 K.

Хромитовые бетоны (р=3,2 — 3,3 т/м3) состоят из хромитовых заполнителей FeCrO4 и используются как жароупорный бетон с рабочей температурой T=1100 K.

Баритовые бетоны (р = 3,0 — 3,6 т/м3) приготавливают из 80 — 85% BaSO4 и используют как строительный материал. Вода содержится в виде воды затвердевания.

Вывод

Таким образом, четкая организация работы службы радиационной безопасности в условиях нормальной эксплуатации является залогом безопасности всех видов работ и в других режимах, в том числе в аварийных режимах эксплуатации АЭС.

Список литературы

  1. Боровой А.А., Васильченко В.Н., Носовский А.В., Попов А.А., Щербина В.Г. Концепция радиационного контроля ПО "Чернобыльская АЭС" и основные технические требования к системе PK. - Чернобыль, 1993.

  2. Васильченко В.Н., Носовский AB., Крючков В.П., Осанов Д.П., Павлов Д.А., Цовьянов А.Г., Бондарчук А.С., Ильичев С.В. Принципы организации сбора информации по дозиметрическим аспектам радиационных аварий. Руководящий документ Росстандарта, РД-187655/94.-Москва, 1994.

  3. Голубев Б.П. Дозиметрия и защита от ионизирующих излучений. / Изд. 3-е, перераб. и доп. Под редакцией E. Л. Столяровой. Учебник для вузов. - M.: Атомиздат, 1976. Закон Украины. Об обращении с радиоактивными отходами. Укр ЯО. - Киев, 1995.

  4. Иванов В.И. Курс дозиметрии: Учебник для вузов./4-е изд., перераб. и доп.-M.: Энергоатомиздат, 1988.

  5. Индивидуальная защита работающих в атомной энергетике/ В.С Кощеев, Д.С. Гольддггейн, В.Н. Клочков и др. -M.: Энергоатомиздат, 1992.

  6. Кононович А.Л., Осколков Б.Я., Кудрявцева Н.А, Коротков В.Т., Ростовцев А.Л., Носовский А.В., Васильченко В.Н., Чабан Н.Г. Оценка радиоактивного состояния подземных вод в районе Чернобыльской АЭС. - Атомная энергия, 1994, т.77, вып.5.

  7. Культура безопасности: Доклад Международной консультативной группы по ядерной безопасности (INSAG). - Вена, МАГАТЭ, 1990. (Серия безопасности 75-INSAG-4).

  8. Левин В.Е. Ядерная физика и ядерные реакторы. Учебник для техникумов. /3-е.изд. - M.: Атомиздат, 1975.

  9. Мащенко Н.П., Мурашко В.А. Радиационное воздействие и радиационная защита населения при ядерных авариях на атомных электростанциях: Учеб. пособие. - К.: Вища шк., 1992.

  10. Машкович В.П., Панченко А.М. Основы радиационной безопасности. Уч. Пособие для вузов. - M.: Энергоатомиздат, 1990.

  11. Носовский А.В., Цовьянов А.Г., Кочетков О.А., Чабан Н.Г., Иванов Е.А. Опыт эксплуатации системы санитарно-пропускного режима на Чернобыльской АЭС. – Атомная энергия, 1997, т. 82, вып.2, с. 140-146.

  12. Нормы радиационной безопасности НРБ -76/87. Основные санитарные правила работы с радиоактивными веществами и другими источниками ионизирующх излучений ОСП - 72/ 87 / Минздрав СССР- 3-е изд., перераб. и доп. - M.: Энергоатомиздат, 1988.

  13. Общие положения обеспечения безопасности атомных станций (ОПБ-88) ПНАЭ Г-1-011-89 / Госатомнадзор СССР. - M.: Энергоатомиздат, 1990.

  14. Правила работы с радиоактивными веществами и другими источниками ионизирующих излучений в учреждениях, организациях и на предприятиях Академии наук СССР.-M.: Наука, 1984.

  15. Радиация: Дозы, эффекты, риск. Пер с англ. - M.: Мир, 1990.

Характеристики

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее