49460 (566585)

Файл №566585 49460 (ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений)49460 (566585)2016-07-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Министерство Топлива и Энергетики Украины

СЕВАСТОПОЛЬСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ЯДЕРНОЙ ЭНЕРГИИ И ПРОМЫШЛЕННОСТИ

Тема:

ЭВМ с использованием математического пакета MathCad в среде Windows 98 для решения системы алгебраических уравнений

Севастополь 2008

План

1. Данные варианта задания

  1. Операции численного решения системы линейных алгебраических уравнений

2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса)

2.2 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Холесского)

2.3 Решение системы линейных алгебраических уравнений методом определителей

2.4 Решение системы линейных алгебраических уравнений методом обратной матрицы

2.5 Решение однородной системы линейных алгебраических уравнений

Выводы по работе №2

1. Данные варианта задания

Коэффициенты квадратной матрицы А и вектора b

Таблица1. Коэффициенты квадратной матрицы А и вектора b.

вар

Коэффициенты квадратной матрицы А и вектора b системы линейных алгебраических уравнений

а11

а12

а13

а14

а21

а22

а23

а24

а31

а32

а33

а34

а41

а42

а43

а44

b1

b2

b3

b4

8

2,4

1,4

1,6

1,8

2,6

12

0,6

4,0

-0,8

0,85

0,1

0,2

0,4

1,2

1,0

1,5

0,1

0,2

-0,4

0,6

2. Операции численного решения системы линейных алгебраических уравнений

2.1 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Гаусса)

a11·x1+ a12·x2+ a13·x3+ a14·x4=b1

a21·x1+ a22·x2+ a23·x3+ a24·x4=b2 (1)

a31·x1+ a32·x2+ a33·x3+ a34·x4=b3

a41·x1+ a42·x2+ a43·x3+ a44·x4=b4

Составим расширенную матрицу системы (1):

Преобразуем матрицу А, для чего умножим первую строку расширенной матрицы на а2111 и вычтем из второй строки расширенной матрицы, затем первую строку умножим на а3111 и вычтем из третьей строки расширенной матрицы, далее первую строку на а41/а11 и вычтем из четвёртой строки, что с помощью Mathcad будет выглядеть так:



Получили новые коэффициенты матрицы А:

Далее аналогично умножаем и вычитаем из второй строки:



Получили новые коэффициенты матрицы А, где число нулевых членов увеличилось.



Далее аналогично умножаем и вычитаем из третьей строки.





Проверим правильность нахождения корней:



Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31

2.2 Решение системы линейных алгебраических уравнений методом последовательного исключения неизвестных (метод Холесского)

Метод Холесского заключается в представлении матрицы в виде произведения двух треугольных матриц L и U , имеющих следующий вид: диагональные элементы L матрицы равны единице, а элементы выше главной диагонали равны нулю; у матрицы U равны нулю элементы, лежащие ниже главной диагонали. Тогда можно записать:

,

что эквивалентно двум треугольным системам,

которые можно решить способом изложенным выше. Элементы lij, и uij матриц L и U можно найти, образуя произведение матриц LU и приравнивая его элементы последовательно элементам а11, а11……. аnn матрицы А.

Последовательно приравниваем элементы полученной матрицы к элементам а11, а11……. аnn матрицы А и находим элементы lij, и uij .

По первой строке:

По второй строке:


По третьей строке:

По четвёртой строке:

Далее вычисляем значения ξ:


2.3 Решение системы линейных алгебраических уравнений методом определителей

Система уравнений с неизвестными, определитель которой не равен нулю, всегда имеет единственное решение. Это решение определяется так: значение каждого из неизвестных равно дроби, знаменателем которой является определитель системы, а числитель получается из определителя системы заменой столбца коэффициентов при искомом неизвестном столбцом свободных членов.






Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31

2.4 Решение системы линейных алгебраических уравнений методом обратной матрицы

Если требуется решить систему для фиксированных значений aij, но для различных значений вектора В, то выгодно построить обратную матрицу А-1 и затем воспользоваться соотношением

Ответ: х1≈0,1 х2≈-0,67 х3≈-2,1 х4≈2,31

2.5 Решение однородной системы линейных алгебраических уравнений

Однородной системой линейных алгебраических уравнений называют такую систему, свободные члены которой равны нулю, т.е.:

a11·x1+ a12·x2+ a13·x3+ a14·x4=0

a21·x1+ a22·x2+ a23·x3+ a24·x4=0

a31·x1+ a32·x2+ a33·x3+ a34·x4=0

a41·x1+ a42·x2+ a43·x3+ a44·x4=0

Однородная линейная система допускает нулевое решение х1=0, х2=0, х3=0, х4=0 и, следовательно, всегда совместна. Интересно выяснить случаи, когда однородная система имеет ненулевые решения. Это будет, если определитель равен нулю.

Найдем значение коэффициента а, при котором определитель равен нулю:



Решение системы будем искать, исключив из нее первое уравнение. Убедимся, что для новой системы уравнений определитель матрицы А не равен нулю:

a21·x1+ a22·x2+ a23·x3 =- a24·x4

a31·x1+ a32·x2+ a33·x3=- a34·x4

a41·x1+ a42·x2+ a43·x3=-a44·x4

Решение системы линейных алгебраических уравнений выполним методом последовательного исключения неизвестных (метод Гаусса). Увеличим для более точных расчётов число знаков после запятой:

В результате будем иметь систему, решение которой определит неизвестные для произвольного значения х4 :

Выводы по работе №2

В результате выполнения практического занятия №2 были изучены некоторые возможности математического пакета MathCad в среде Windows 98 для использования матричной алгебры и решения системы линейных алгебраических уравнений, а также изучены методы решения систем линейных алгебраических уравнений. В процессе работы я научился:

  1. Задавать шаблоны матриц и векторов.

  2. Работать с массивами, векторами и матрицами.

  3. Решать системы линейных алгебраических уравнений различными методами.

Интересно признать, что решение систем уравнений в курсе высшей математики занимало большое количество времени. Например, решение системы методом последовательного исключения неизвестных (метод Гаусса) довольно громоздкий для ручного расчёта и намного быстрее производится с помощью MathCad , причём с точностью до 18 знаков после запятой. Наиболее наглядным является метод определителей, а самым простым и быстрым - метод обратной матрицы. Результаты расчётов, полученные разными методами, совпадают.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лабораторной работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6987
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}