49459 (566584), страница 2
Текст из файла (страница 2)
В процессе данной практической работы я изучил возможности математического пакета MathCad в среде Windows для решения дифференциальных уравнений N-го порядка, используемых в инженерных расчетах электротехнических систем. Были выполнены численные методы решения дифференциальных уравнений N-го порядка. Заданное уравнение 4-го порядка описывает динамические процессы электротехнической системы. Оно было преобразовано в систему дифференциальных уравнений первого порядка (в нормальную форму Коши). Мы воспользовались функцией rkfixed(y0, t0, t1, M, D) -получили матрицу решения системы обыкновенных дифференциальных уравнений численным методом Рунге-Кута на интервале от t0 до t1 при M фиксированных шагах решения и правыми частями уравнений, записанными в D. Получено численное и графическое представление результатов.
Решение уравнения операторным методом предполагает применение преобразования Лапласа. В данной работе мы использовали преобразование Лапласа к искомой переменной системы, в частности, теорему о дифференцировании оригинала и свойство линейности преобразования Лапласа. Мы применили преобразование Лапласа (функция laplace), чтобы переменные вещественного аргумента t заменить на переменные комплексного аргумента s, дифференцирование заменить умножением на s, повторное на s в квадрате и т.д. Из полученных в комплексной области алгебраических уравнений нашли отношение выходной характеристики к входной. Это изображение обычно представляет собой передаточную функцию системы автоматического управления. Используя обратное преобразование Лапласа( функция invlaplace), найден оригинал искомой переменной.
Графики изменения искомой переменной, полученные в результате решения дифференциального уравнения двумя методами совпадают.