lr8 (542538)

Файл №542538 lr8 (Лабник)lr8 (542538)2015-08-16СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла


Работа № 8. Линейный регрессионный анализ

В линейный регрессионный анализ входит широкий круг задач, связанных с построением (восстановлением) зависимостей между группами числовых переменных

X º (x1 , ..., xp) и Y = (y1 ,..., ym).

Предполагается, что Х - независимые переменные (факторы, объясняющие переменные) влияют на значения Y - зависимых переменных (откликов, объясняемых переменных). По имеющимся эмпирическим данным (Xi , Yi), i = 1, ..., n требуется построить функцию f (X), которая приближенно описывала бы изменение Y при изменении X:

Y » f (X).

Предполагается, что множество допустимых функций, из которого подбирается f (X), является параметрическим:

f (X) = f (X, q),

где q - неизвестный параметр (вообще говоря, многомерный). При построении f (X) будем считать, что

Y = f (X, q) + e, (1)

где первое слагаемое - закономерное изменение Y от X, а второе - e - случайная составляющая с нулевым средним; f (X, q) является условным математическим ожиданием Y при условии известного X и называется регрессией Y по X.

1. Простая линейная регрессия

Пусть X и Y одномерные величины; обозначим их x и y, а функция f(x, q) имеет вид f (x, q) = A + bx, где q = (A, b). Относительно имеющихся наблюдений (xi , yi), i = 1, ..., n, полагаем, что

yi = A + bxi + ei , (2)

где e1 , ..., en - независимые (ненаблюдаемые) одинаково распределенные случайные величины. Можно различными методами подбирать “лучшую” прямую линию. Широко используется метод наименьших квадратов. Построим оценку параметра q = (A, b) так, чтобы величины

ei = yi - f (xi, q) = yi - A - bxi ,

называемые остатками, были как можно меньше, а именно, чтобы сумма их квадратов была минимальной:

= min по (A, b) (3)

Чтобы упростить формулы, положим в (2) xi = xi - ; получим:

yi = a + b (xi - ) + ei , i = 1, ..., n, (3)

где = , a = A + b . Сумму минимизируем по (a,b), приравнивая нулю производные по a и b; получим систему линейных уравнений относительно a и b. Ее решение ( ) легко находится:

, где , (4)

. (5)

Свойства оценок. Нетрудно показать, что если Mei = 0, Dei = s2 , то

1) M = а, М = b, т.е. оценки несмещенные;

2) D = s2 / n, D = s2 / ;

3) cov ( ) = 0;

если дополнительно предположить нормальность распределения ei , то

4) оценки и нормально распределены и независимы;

5) остаточная сумма квадратов

Q2 = (6)

независима от ( , ), а Q2 / s2 распределена по закону хи-квадрат с n-2 степенями свободы.

Оценка для s2 и доверительные интервалы. Свойство 5) дает возможность несмещенно оценивать неизвестный параметр s2 величиной

s2 = Q2 / (n-2). (7)

Поскольку s2 независима от и , отношения

и , где ,

имеют распределение Стьюдента с (n-2) степенями свободы, и потому доверительные интервалы для a и b таковы:

, , (8)

где tp - квантиль уровня (1 + PД) / 2 распределения Cтьюдента с n - 2 степенями свободы, PД - коэффициент доверия.

Проверка гипотезы о коэффициенте наклона. Обычно возникает вопрос: может быть, y не зависит от х, т.е. b = 0, и изменчивость y обусловлена только случайными составляющими ei ? Проверим гипотезу Н: b = 0. Если 0 не входит в доверительный интервал (8) для b, т.е.

, (9)

то гипотезу Н следует отклонить; уровень значимости при этом a = 1 - PД.

Другой способ (в данном случае эквивалентный (9)) проверки гипотезы Н состоит в вычислении статистики

F = , (10)

распределенной, если Н верна, по закону F (1, n - 2) Фишера с числом степеней свободы 1 и n - 2. Если

F > F1-a , (11)

где F1-a - квантиль уровня 1 - a распределения F (1, n - 2), то гипотеза Н отклоняется с уровнем значимости a.

Вариация зависимой переменной и коэффициент детерминации. Рассмотрим вариацию (разброс) Tss (total sum of square) значений yi относительно среднего значения

Tss = .

Обозначим предсказанные с помощью функции регрессии значения yi: . Сумма Rss (regression sum of square)

Rss =

означает величину разброса, которая обусловлена регрессией (ненулевым значением наклона ). Сумма Ess (error sum of squares)

Ess =

означает разброс за счет случайных отклонений от функции регрессии. Оказывается,

Tss = Rss + Ess ,

т.е. полный разброс равен сумме разбросов за счет регрессии и за счет случайных отклонений. Величина Rss / Tss - это доля вариации значений yi , обусловленной регрессией (т.е. доля закономерной изменчивости в общей изменчивости). Статистика

R2 = Rss / Tss = 1 - Ess / Tss

называется коэффициентом детерминации. Если R2 = 0, это означает, что регрессия ничего не дает, т.е. знание х не улучшает предсказания для y по сравнению с тривиальным . Другой крайний случай R2 = 1 означает точную подгонку: все точки наблюдений лежат на регрессионной прямой. Чем ближе к 1 значение R2 , тем лучше качество подгонки.

Пример [5]. В табл. 1 приведены данные по 45 предприятиям легкой промышленности по статистической связи между стоимостью основных фондов (fonds, млн руб.) и средней выработкой на 1 работника (product, тыс. руб.); z - вспомогательный признак: z = 1 - федеральное подчинение, z = 2 - муниципальное (файл Product. Sta.).

Таблица 1

fonds

product

z

fonds

product

z

fonds

product

z

6,5

18,3

1

9,3

17,2

2

10,4

21,4

2

10,3

31,1

1

5,7

19,0

2

10,2

23,5

2

7,7

27,0

1

12,9

24,8

2

18,0

31,1

2

15,8

37,9

1

5,1

21,5

2

13,8

43,2

2

7,4

20,3

1

3,8

14,5

2

6,0

19,5

2

14,3

32,4

1

17,1

33,7

2

11,9

42,1

2

15,4

31,2

1

8,2

19,3

2

9,4

18,1

2

21,1

39,7

1

8,1

23,9

2

13,7

31,6

2

22,1

46,6

1

11,7

28,0

2

12,0

21,3

2

12,0

33,1

1

13,0

30,9

2

11,6

26,5

2

9,5

26,9

1

15,3

27,2

2

9,1

31,6

2

8,1

24,0

1

13,5

29,9

2

6,6

12,6

2

8,4

24,2

1

10,5

34,9

2

7,6

28,4

2

15,3

33,7

1

7,3

24,4

2

9,9

22,4

2

4,3

18,5

1

13,8

37,4

2

14,7

27,7

2

Выполнение в пакете Statistica

Работаем в модуле Multiple Regression (множественная регрессия). Предварительно построим диаграмму рассеяния, чтобы убедиться, что предположение линейности регрессионной зависимости не лишено смысла.

Graphs - Stats 2D Graphs - Scatter plots - Variables - X: fonds, Y : product, Graphs Type: Regular, Fit (подбор): Linear - OK - OK.

Характеристики

Тип файла
Документ
Размер
523 Kb
Материал
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее