Nash - Compact Numerical Methods for Computers (523163), страница 58
Текст из файла (страница 58)
Sci. Stat. Comp. 6 599-616---1985b Solving nonlinear programming problems using truncated-Newton techniques Boggs, Byrdand Schnabel pp 119-36NASH S G and RUST B 1986 Regression problems with bounded residuals Technical Report No 478(Baltimore, MD: Dept of Mathematical Sciences, The Johns Hopkins University)NELDER J A and MEAD R 1965 A simplex method for function minimization Comput. J. 7 308-13NEWING R A and CUNNINGHAM J 1967 Quantum Mechanics (Edinburgh: Oliver and Boyd)OLIVER F R 1964 Methods of estimating the logistic growth function Appl. Stat.
13 57-66---1966 Aspects of maximum likelihood estimation of the logistic growth function JASA 61 697-705OLSSON D M and NELSON L S 1975 The Nelder-Mead simplex procedure for function minimizationTechnometrics 17 45-51; Letters to the Editor 3934O’NEILL R 1971 Algorithm AS 47: function minimization using a simplex procedure Appl. Stat. 20 338-45OSBORNE M R 1972 Some aspects of nonlinear least squares calculations Numerical Methods for NonlinearOptimization ed. F A Lootsma (London: Academic) pp 171-89PAIGE C C and SAUNDERS M A 1975 Solution of sparse indefinite systems of linear equations SIAM J.Numer.
Anal. 12 617-29PAULING L and WILSON E B 1935 Introduction to Quantum Mechanics with Applications to Chemistry (NewYork: McGraw-Hill)PENROSE R 1955 A generalized inverse for matrices Proc. Camb. Phil. Soc. 51 406-13PERRY A and SOLAND R M 1975 Optimal operation of a public lottery Mgmt. Sci. 22 461-9PETERS G and WILKINSON J H 1971 The calculation of specified eigenvectors by inverse iteration LinearAlgebra, Handbook for Automatic Computation vol 2, eds J H Wilkinson and C Reinsch (Berlm:Springer) pp 418-39---1975 On the stability of Gauss-Jordan elimination with pivoting Commun. ACM 18 20-4PIERCE B O and FOSTER R M 1956 A Short Table of Integrals 4th edn (New York: Blaisdell)POLAK E and RIBIERE G 1969 Note sur la convergence de méthodes de directions conjugées Rev.
Fr. Inf.Rech. Oper. 3 35-43POWELL M J D 1962 An iterative method for stationary values of a function of several variables Comput. J.5 147 51---1964 An efficient method for finding the minimum of a function of several variables withoutcalculating derivatives Comput. J. 7 155-62---1975a Some convergence properties of the conjugate gradient method CSS Report No 23 (Harwell,UK: Computer Science and Systems Division, Atomic Energy Research Establishment)----1975b Restart procedures for the conjugate gradient method CSS Report No 24 (Harwell, UK:Computer Science and Systems Division, Atomic Energy Research Establishment)---1981 Nonlinear Optimization (London: Academic)PRESS W H, FLANNERY B P, TEUKOLSKY S A and VETTERLING W T (1986/88) Numerical Recipes (inFortran/Pascal/C), the Art of Scientific Computing (Cambridge, UK: Cambridge University Press)RALSTON A 1965 A First Course in Numerical Analysis (New York: McGraw-Hill)RATKOWSKY D A 1983 Nonlinear Regression Modelling (New York: Marcel-Dekker)REID J K 1971 Large Sparse Sets of Linear Equations (London: Academic)RHEINBOLDT W C 1974 Methods for Solving Systems of Nonlinear Equations (Philadelphia: SIAM)RICE J 1983 Numerical Methods Software and Analysis (New York: McGraw-Hill)Bibliography269RILEY D D 1988 Structured programming: sixteen years later J.
Pascal, Ada and Modula-2 7 42-8ROSENBKOCK H H 1960 An automatic method for finding the greatest or least value of a function Comput.J. 3 175-84ROSS G J S 1971 The efficient use of function minimization in non-linear maximum-likelihood estimationAppl. Stat. 19 205-21---1975 Simple non-linear modelling for the general user Warsaw: 40th Session of’ the InternationalStatistical Institute 1-9 September 1975, ISI/BS Invited Paper 81 pp 1-8RUHE A and WEDIN P-A 1980 Algorithms for separable nonlinear least squares problems SIAM Rev. 22318-36RUHE A and WIBERG T 1972 The method of conjugate gradients used in inverse iteration BIT 12 543-54RUTISHAUSER H 1966 The Jacobi method for real symmetric matrices Numer.
Math. 9 1-10; also in LinearAlgebra, Handbook for Automatic Computation vol 2, eds J H Wilkinson and C Reinsch (Berlin:Springer) pp 202-11 (1971)SARGENT R W H and SEBASTIAN D J 1972 Numerical experience with algorithms for unconstrainedminimisation Numerical Methods for Nonlinear Optimization ed. F A Lootsma (London: Academic) pp445-68SCHNABEL R B, KOONTZ J E and WEISS B E 1985 A modular system of algorithms for unconstrainedminimization ACM Trans. Math. Softw.
11 419-40SCHWARZ H R, R UTISHAUSER H and S TIEFEL E 1973 Numerical Analysis of Symmetric Matrices(Englewood Cliffs, NJ: Prentice- Hall)SEARLE S R 1971 Linear Models (New York: Wiley)SHANNO D F 1970 Conditioning of quasi-Newton methods for function minimization Math. Comput. 24647-56SHEARER J M and WOLFE M A 1985 Alglib, a simple symbol-manipulation package Commun. ACM 28820-5SMITH F R Jr and SHANNO D F 1971 An improved Marquardt procedure for nonlinear regressionsTechnometrics 13 63-74SORENSON H W 1969 Comparison of some conjugate direction procedures for function minimization J.Franklin Inst. 288 421-41SPANG H A 1962 A review of minimization techniques for nonlinear functions SIAM Rev. 4 343-65SPENDLEY W 1969 Nonlinear least squares fitting using a modified Simplex minimization method Fletcherpp 259-70SPENDLEY W, HEXT G R and HIMSWORTH F R 1962 Sequential application of simplex designs inoptimization and evolutionary operation Technometric.
4 441-61STEWART G W 1973 Introduction to Matrix Computations (New York: Academic)---1976 A bibliographical tour of the large, sparse generalized eigenvalue problem Sparse MatrixComputations eds J R Bunch and D J Rose (New York: Academic) pp 113-30---1987 Collinearity and least squares regression Stat. Sci. 2 68-100STRANG G 1976 Linear Algebra and its Applications (New York: Academic)SWANN W H 1974 Direct search methods Numerical Methods for Unconstrained Optimization ed.
WMurray (London/New York: Academic)SYNGE J L and GRIFFITH B A 1959 Principles of Mechanics 3rd edn (New York: McGraw-Hill)TOINT PH L 1987 On large scale nonlinear least squares calculations SIAM J. Sci. Stat. Comput. 8 416-35VARGA R S 1962 Matrix Iterative Analysis (Englewood Cliffs. NJ: Prenticee-Hall)WILKINSON J H 1961 Error analysis of direct methods of matrix inversion J. ACM 8 281-330---1963 Rounding Errors in Algebraic Processes (London: HMSO)---1965 The Algebraic Eigenvalue Problem (Oxford: Clarendon)WILKINSUN J H and REINSCH C (eds) 197 1 Linear Algebra, Handbook for Automatic Computation vol 2(Berlin: Springer)WOLFE M A 1978 Numerical Methods for Unconstrained Optimization, an Introduction (Wokingham, MA:Van Nostrand-Reinhold)YOURDON E 1975 Techniques of’ Program Structure and Design (Englewood Cliffs, NJ: Prentice-Hall)ZAMBARDINO R A 1974 Solutions of systems of linear equations with partial pivoting and reduced storagerequirements Comput.
J. 17 377-8270Previous HomeINDEXAbramowitz. M., 4Absolute value, 17Acton, F. S.. 104. 146. 162Actuarial calculations, 165Addition of observations in least-squares, 64Algebraic eigenvalue problem. 234ALGOL,13,80,83ALGOL-60,80ALGOL-68, 80Algorithms,informal definition of. 1choice of, 13expression of, 15list of, 255Alternative implementation of singular-valuedecomposition. 38Alternative optima, 230Analytic expression for derivatives, 218.
223Anharmonic oscillator. 138Annihilator of vector. 26APL, 12Argonne National Laboratory, 10Arithmetic.machine, 6operations, 5Autocorrelation, 180Axial search, 171, 178Bisection. 16 1for matrix eigenvalues. 133Björck, A.. 70. 75, 80, 81, 197Bordered matrix. 253Boundary-value problem, 20Bowdler, H. J.. 80Bradbury, W.
W., 244Bremmerman. H.. 147Brent. R. P., 154, 185Brown, K. M.. 146.232Broyden. C. G.. 190Businger. P. A.. 63c (programming language), 11Campey. 182Cancellation of digits. 55Cauchy. A., 186,208Celestial mechanics, 13 1Centroid of points. 168function value at. 172Chambers, J. M., 63Chartres, B. A.. 33, 134Choice.in extended Choleski decomposition, 88of algorithms, 13of algorithms or programs, 14Choleski back-solution, 2 12Choleski decomposition, 13. 27, 84, 136, 2 12, 253extension of. 86Chopping (truncation), 7Cobb-Douglas production function, 144Coefficient matrix, 19, 72Collinearity. 30, 45Column permutations, 75comeig (ALGOL procedure), 110Compactness of programs, 12Comparison of function minimisationalgorithms, 218, 226Compiler for a computer programming language,91Complete matrix eigenvalue problem, 119, 135Complex arithmetic, 83Back-substitution, 72.
75, 86.93. 136with null diagonal elements, 105Back-transformation, 133Backward difference, 2 19Bard, Y.. 207Base period for index numbers. 77BASIC ,11,63,123,127Basis functions, 138Bauer, F., 97Beale, E. M. L., 198Beale-Sorenson formula. 199BFS update of approximate Hessian. 190Bibliography, 263Biggs, M. C., 207271272Compact numerical methods for computersComplex matrix,eigensolutions of, 1 10Complex systems of linear equations, 82Components,principal, 40, 46Computability of a function, 153Computations,statistical, 66Computer,small, 3Conjugacy of search directions, 186, 188, 197,244,245Conjugate gradients, 153, 186, 197, 223, 228, 232,233in linear algebra, 234Constrained optimisation, 3, 218, 221Constraints, 143equality, 221independent, 221inequality, 221Contraction of simplex, 168, 170Convergence,criteria for, 5, 15of inverse iteration, 105of Nelder-Mead search, 180of power method, 103Convergence test, 159, 171, 180, 242for inverse iteration, 108Convex function, 208Corrected R2 statistic, 45Cost of computations, 1, 3Cox, M., 133Cross-products matrix, 49, 66Crout method, 75, 80for complex equations, 83Cubic interpolation, 15 1Cubic inverse interpolation, 159Cubic-parabola problem, 232Cunningham, J., 138,141Cycle or sweep, 35, 49Cyclic Jacobi algorithm, 127Cyclic re-ordering, 98Dahlquist, G., 70, 75, 80, 81, 197Data General computers, see NOVA orECLIPSEData points, 142Davies, 182Davies, Swann and Campey method, 182Decomposition,Choleski, 27of a matrix, 26, 49Definiteness of a matrix, 22Degenerate eigenvalues, 120, 125Degrees of freedom, 46Deletion of observations in least-squares, 64Delta,Kronecker, 3 1, 73, 119Dense matrix, 20, 23Derivative evaluation count, 217Derivatives of a function, 149, 187, 210approximation by differences, 21, 217in minimisation, 143De-scaling,of nonlinear least-squares problem, 223of nonlinear minimisation, 231Descent methods for function minimisation, 186Diagonal matrix, 254Diagonalisation of a real symmetric matrix, 126Difference,replacement of derivative, 21Differential equations,ordinary, 20Digit cancellation, 55Ding Dong matrix, 122, 253Direct method for linear equations, 72Direct search methods for function minimisation182Dixon, L.