Van Eyk, Dunn - Proteomic and Genomic Analysis of Cardiovascular Disease - 2003 (522919), страница 92
Текст из файла (страница 92)
Molecular cloning of ratcardiac troponin I and analysis of troponin I isoform expression in developingrat heart. Biochemistry 1991, 30, 707–712.2324252627282930313233Cooper, T. A., C. P. Ordahl. A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 1984, 226, 979–982.Samson, F., L. Mesnard, M. Mihovilovic, T. G. Potter, J. J. Mercadier, et al. Anew human slow skeletal troponin T(TnTs) mRNA isoform derived from alternative splicing of a single gene. Biochem.Biophys. Res.
Commun. 1994, 199, 841–847.Wu, Q. L., P. K. Jha, M. K. Raychowdhury, Y. Du, P. C. Leavis, et al. Isolationand characterization of human fast skeletal beta troponin T cDNA: comparativesequence analysis of isoforms and insight into the evolution of members of amultigene family. DNA Cell. Biol. 1994,13, 217–233.Bucher, E.
A., de la Brousse F. C,C. P. J. Emerson. Developmental andmuscle-specific regulation of avian fastskeletal troponin T isoform expression bymRNA splicing. J. Biol. Chem. 1989, 264,12 482–12 491.Adamcova, M., V. Pelouch. Isoforms oftroponin in normal and diseased myocardium. Physiol. Res. 1999, 48, 235–247.Thierfelder, L., H. Watkins, C. MacRae, R. Lamas, W. McKenna, H.
P. Vosberg, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familialhypertrophic cardiomyopathy: a diseaseof the sarcomere. Cell 1994, 77, 701–712.Anderson, P. A., G. E. Moore, R. N. Nassar. Developmental changes in the expression of rabbit left ventricular troponin T. Circ. Res. 1988, 63, 742–747.Saggin, L., L.
Gorza, S. Ausoni,Schiaffino. Cardiac troponin T in developing, regenerating and denervated ratskeletal muscle. Development 1990, 110,547–554.Wilkinson, J. M. Troponin C from rabbitslow skeletal and cardiac muscle is theproduct of a single gene. Eur. J. Biochem.1980, 103, 179–188.de Tombe, P. P., R. J. Solaro. Integrationof cardiac myofilament activity and regulation with pathways signaling hypertrophy and failure. Ann. Biomed. Eng.
2000,28, 991–1001.Deng, Y., A. Schmidtmann, A. Redlich,B. Westerdorf, K. Jaquet, et al. Effects of33533619 Myofilament Proteomics34353637383940414243phosphorylation and mutation R145G onhuman cardiac troponin I function. Biochemistry 2001, 40, 14 593–14 602.Arrell, D. K., I. Neverova, H.
Fraser, E.Marban, J. E. Van Eyk. Proteomic analysis of pharmacologically preconditionedcardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ. Res.2001, 89, 480–487.Marston, S. B., J. L. Hodgkinson. Cardiac and skeletal myopathies: can genotypeexplain phenotype? J. Muscle Res. Cell.Motility 2001, 22, 1–4.Solaro, R. J., J. E. Van Eyk.
Altered interactions among thin filament proteinsmodulate cardiac function. J. Mol. Cell.Cardiol. 1996, 28, 217–230.Mittmann, C., T. Eschenhagen, H.Scholz. Cellular and molecular aspectsof contractile dysfunction in heart failure. Cardiovasc. Res. 1998, 39, 267–275.Dalloz, F., H. Osinska, J. Robbins. Manipulating the contractile apparatus: genetically defined animal models of cardiovascular disease. J. Mol. Cell. Cardiol.2001, 33, 9–25.Kimura, A., H. Harada, J.
E. Park, H.Nishi, M. Satoh, et al. Mutations in thecardiac troponin I gene associated withhypertrophic cardiomyopathy. Nature Genetics 1997, 16, 379–382.Morner, S., P. Richard, E. Kazzam, B.Hainque, K. Schwartz, et al. Deletionin the cardiac troponin I gene in a family from northern Sweden with hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol.
2000, 32, 521–525.Kokado, H., M. Shimizu, H. Yoshio, H.Ino, K. Okeie, et al. Clinical features ofhypertrophic cardiomyopathy caused by aLys183 deletion mutation in the cardiactroponin I gene. Circ. 2000, 102, 663–669.Ilkovski, B., S. T. Cooper, K. Nowak,M. M. Ryan, N. Yang, et al. Nemalinemyopathy caused by mutations in themuscle alpha-skeletal-actin gene. Am. J.Hum. Genet. 2001, 68, 1333–1343.Michele, D. E., J.
M. Metzger. Physiological consequences of tropomyosin mutations associated with cardiac and skeletal myopathies. J. Mol. Med. 2000, 78,543–553.4445464748495051525354Richardson, R. S., S. C. Newcomer, E. A.Noyszewski. Skeletal muscle intracellularPO2 assessed by myoglobin desaturation:response to graded exercise. J. Appl. Physiol. 2001, 91, 2679–2685.Trahair, T., T. Yeoh, T. Cartmill, A.Keogh, P. Spratt, et al. Myosin lightchain gene expression associated withdisease states of the human heart. J. Mol.Cell.
Cardiol. 1993, 25, 577–585.Schaub, M. C., M. A. Hefti, R. A. Zuellig, I. Morano. Modulation of contractility in human cardiac hypertrophy bymyosin essential light chain isoforms.Cardiovasc. Res. 1998, 37, 381–404.Van Eyk, J. E., A. M. Murphy. The role oftroponin abnormalities as a cause forstunned myocardium. Coron. Artery. Dis.2001, 12, 343–347.McDonough, J. L., R.
Labugger, W.Pickett, S. MacKenzie, D. Atar, et al.Cardiac troponin I is modified in themyocardium of bypass patients. Circ.2001, 103, 58–64.Labugger, R., L. Organ, C. Collier, D.Atar, J. E. Van Eyk. Extensive troponin Iand T modification detected in serumfrom patients with acute myocardial infarction. Circ. 2000, 102, 1221–1226.Murphy, A. M., H. Kogler, D. Georgakopoulos, J. L. McDonough, D. A. Kass,et al. Transgenic mouse model of stunnedmyocardium. Science 2000, 287, 488–491.Simpson, J. A., R. Labugger, G.
G. Hesketh, C. D’Arsigny, D. E. O’Donnell, etal. Differential detection of skeletal troponin I isoforms in serum of a patient withrhabdomyolysis: markers of muscle injury? Clin. Chem. 2002 (in press).Solaro, R. J., D. C. Pang, F. N. Briggs.The purification of cardiac myofibrilswith Triton X-100. Biochim. Biophys. Acta1971, 245, 259–262.Neverova, I., J. E. Van Eyk. Applicationof reversed phase high performance liquid chromatography for subproteomicanalysis of cardiac muscle.
Proteomics2002, 2, 22–31.Strauss, J. D., J. E. Eyk, Z. Barth, R. J.Wiesner, et al. Recombinant troponin Isubstitution and calcium responsivenessin skinned cardiac muscle. Pflugers Arch.1996, 431, 853–862.19.6 References55Moss, R. L., G. G. Giulian, M. L. Greaser. The effects of partial extraction ofTnC upon the tension-pCa relationshipin rabbit skinned skeletal muscle fibers.J. Gen.
Physiol. 1985, 86, 585–600.56 Labugger, R., J. L. McDonough, I.Neverova, J. E. Van Eyk. Proteomic analysis of cardiac myofilament proteins:2DE focusing and detection of troponinT. Proteomics 2002 (in press).57 Merril, C. R., M. E. Bisher, M. Harrington, A. C. Steven. Coloration of silver-stained protein bands in polyacrylamide gels is caused by light scatteringfrom silver grains of characteristic sizes.Proc. Nat. Acad.
Sci. USA 1988, 85, 453–457.58 Barbato, R., R. Menabo, P. Dainese, E.Carafoli, S. Schiaffino, F. Di Lisa.Binding of cytosolic proteins to myofibrils in ischemic rat hearts. Circ. Res.1996, 78, 821–828.59Weinberger, S. R., T. S. Morris, M. Pawlak. Recent trends in protein biochiptechnology. Pharmacogenomics 2000, 1,395–416.60 Liu, H., D.
Lin, J. R. Yates. Multidimensional separations for protein/peptideanalysis in the post-genomic era. Biotechniques 2002, 32, 898–902.61 Alpert, J. S., K. Thygesen, E. Antman,J. P. Bassand. Myocardial infarction redefined – a consensus document of TheJoint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J. Am. Coll. Cardiol 2000, 36,959–969.62 Colantonio, D. A., W. Pickett, R.
J. Brison, C. E. Collier, J. E. Van Eyk. Detection of cardiac troponin I early after onset of chest pain in six patients. Clin.Chem. 2002, 48, 668–671.337Section 3Future PerspectivesProteomic and Genomic Analysis of Cardiovascular Disease.Edited by Jennifer E. van Eyk, Michael J. DunnCopyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimISBN: 3-527-30596-334120Genomics Perspective for Drug DiscoveryA. J. Marian and Michael H.
Gollob20.1IntroductionThe history of drug discovery could be divided into three eras. The first era wasmarked by the empiric use of natural products based on anecdotal reports. At theturn of the 20th century, the paradigm shifted when discoveries of chemistry werejoined with the tools of pharmacology to design and develop drugs based on rational biological experimentations. During this phase, which spanned the entire20th century, clinical utilization of drugs gradually transformed from the empiricuse to evidence-based effectiveness.