Van Eyk, Dunn - Proteomic and Genomic Analysis of Cardiovascular Disease - 2003 (522919), страница 49
Текст из файла (страница 49)
A. Jr., Davies P. F. The dynamic response of vascular endothelialcells to fluid shear stress. J Biomech Eng.1981, 103(3), 177–185.Nerem R. M., Levesque M. J., CornhillJ. F. Vascular endothelial morphology asan indicator of blood flow. J. Biochem.Eng. 1981, 103, 172–178.Resnick N., Gimbrone M. A. Jr. Hemodynamic forces are complex regulators ofendothelial gene expression. FASEB J.1995, 9(10), 874–882.Gimbrone M. A.
Jr., Topper J. N., NagelT., Anderson K. R., Garcia-Gardena G.Endothelial dysfunction, hemodynamicforces, and atherogenesis. Ann. N. Y.Acad. Sci. 2000, 902, 230–239.Khachigian L. M., Anderson K. R.,Halnon N. J., Gimbrone M. A. Jr., Resnick N., Collins T. Egr-1 is activated inendothelial cells exposed to fluid shearstress and interacts with a novel shearstress response element in PDGF Achain promoter. Arteriscler. Thromb. Vasc.Biol. 1997, 17, 2280–2286.Khachigian L. M, Resnick N, Gimbrone M.
A Jr, Collins T. Nuclear factor-kappa B interacts functionally withthe platelet-derived growth factor B-chainshear-stress response element in vascularendothelial cells exposed to fluid shearstress. J Clin Invest. 1995, 96(2), 1169–1175.Gimbrone M. A. Jr., Nagel T., TopperJ. N. Biomechanical activation: an emerging paradigm in endothelial adhesionbiology. J. Clin. Invest. 1997, 100, S61–S65.Traub O., Berk B. C. Laminar shearstress: mechanisms by which endothelialcells transduce an atheroprotective force.Arterioscler.
Thromb. Vasc. Biol. 1998, 18,677–685.García-Cardea G., Comander J., Anderson K. R., Blackman B. R., Gimbrone M. A. Jr. Biomechanical activation16917010 Gene Expression Profiling and Vascular Cells22232425262728293031of vascular endothelium as a determinant of its functional phenotype.
Proc.Natl. Acad. Sci. USA 2001, 98 (8), 4478–4485.Chen B. P. C., Li Y. S., Zhao Y., ChenK. D., Li S., Lao J., Yuan S., Shyy J. Y. J.,Chien S. DNA microarray analysis ofgene expression in endothelial cells in response to 24-h shear stress. Physiol.Genomics 2001, 7, 55–63.Partanen J., Dumont D. J. Function ofTie1 and Tie2 receptor tyrosine kinasesin vascular development. Current Top Microbiol Immunol 1999, 237, 159–172.Goupille P., Jayson M.
I., Valat J. P.,Freemont A. J. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 1998, 23, 1612–1626.McCormick S. M., Eskin S. G., McIntire L. V., Teng C. L., Lu C-M., RussellC. G., Chittur K. K. DNA microarray reveals changes in gene expression ofshear stressed human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. USA2001, 98(16), 8955–8960.Hahn A., Heusinger-Ribeiro J., LanzT., Zenkel S., Goppelt-Struebe M. Induction of connective tissue growth factor by activation of heptahelical receptors.Modulation by Rho proteins and the actin cytoskeleton. J. Biol.
Chem. 2000, 275,37 429–37 435.Oemar B. S, Werner A, Garnier J. M,Do D. D, Godoy N, Nauck M, Marz W,Rupp J, Pech M, Luscher T. F. Humanconnective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation. 1997, 95(4), 831–839.de Waard V., van den Berg B. M., Veken J., Schultz-Heienbrok R., Pannekoek H., van Zonneveld A.
J. Serialanalysis of gene expression to assess theendothelial cell response to an atherogenic stimulus. Gene. 1999, 226, 1–8.Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.1971, 285, 1182–1186.Kerbel R. S. Tumor angiogenesis: past,present and the near future. Carcinogenesis. 2000, 21, 505–515.St. Croix B., Rago C., Velculescu V.,Traverso G., Romans K. E., Montgomery E., Lal A., Riggins G.
J., Lengauer3233343536373839C., Vogelstein B., Kinzler K. W. Geneexpressed in human tumor endothelium.Science. 2000, 289, 1191–1202.Novatchkova M., Eisenhaber F. Canmolecular mechanisms of biological processes be extracted from expression profiles? Case study: endothelial contributionto tumor-induced angiogenesis. BioEssays2001, 23(12), 1159–1175.Cheng G.
C., Briggs W. H., GersonD. S., Libby P., Grodzinsky A. J., GaryM. L., Lee R. T. Mechanical strain tightlycontrols fibroblast growth factot-2 releasefrom cultured human vascular smoothmuscle cells. Circ Research 1997, 80, 28–36.Lindner V., Reidy M. A.
Proliferation ofsmooth muscle cells after vascular injuryis inhibited by an antibody against basicfibroblast growth factor. Proc. Natl. Acad.Sci. USA. 1991, 88, 3739–3743.Feng Y., Yang J. Huang H., KennedyS., Turi T., Thompson J., Libby P., LeeR. Transcriptional profile of mechanicallyinduced genes in human vascularsmooth muscle cells. Circ Res 1999, 85,1118–1123.Lee R. T., Yamamoto C., Feng Y., PotterPerigo S., Briggs W.
H., LandschulzK. T., Turi T. G., Thompson J. F., LibbyP., Wight T. N. Mechanical strain induces specific changes in the synthesisand organization of proteoglycans by vascular smooth muscle cells. J Biol Chem.2001, 276(17), 13847–13851.Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J. C. F., TrentJ.
M., Staudt L. M., Hudson J. Jr., Boguski M. S., Lashkari D., Shalon D.,Botstein D., Brown P. O. The transcriptional program in the response of human fibroblasts to serum. Science. 1999,283, 83–87.Pendurthi U., Allen K., Ezban M., RaoL. Factor VIIa and thrombin induce theexpression of Cyr61 and connective tissuegrowth factor, extracellular matrix signaling proteins that could act as possibledownstream mediators in factor VIIa xtissue factor-induced signal transduction.J Biol Chem 2000, 275, 14 632–14 641.Suzuki T, Hashimoto S, Toyoda N, Nagai S, Yamazaki N, Dong H. Y, Sakai J,10.5 ReferencesYamashita T, Nukiwa T, Matsushima K.Comprehensive gene expression profileof LPS-stimulated human monocytes bySAGE. Blood.
2000, 96(7), 2584–2591.40 Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999, 340(2),115–126.41 Shiffman D., Mikita T., Tai J. T., WadeD. P. Porter J. G., Seihamer J. J., Somogyi R., Liang S., Lawn R. M. Large scalegene expression analysis of cholesterolloaded macrophages. J Biol Chem 2000,275(48), 37 324–37 332.42Ohki R., Yamamoto K., Mano H., LeeR. T., Ikeda U., Shimada K. Identification of mechanically induced genes inhuman monocytic cells by DNA microarrays. J Hypertens.
2002, 20(4), 685–691.43 Peters D. G, Kassam A. B, Feingold E,Heidrich-O’Hare E, Yonas H, FerrellR. E, Brufsky A. Molecular anatomy ofan intracranial aneurysm: coordinated expression of genes involved in woundhealing and tissue remodeling. Stroke.2001,32(4),1036–1042.17117311Proteomics, a Step Beyond Genomics:Applications to Cardiovascular DiseaseEmma McGregor and Michael J. Dunn11.1IntroductionThe concept of mapping the human complement of protein expression was firstproposed more than twenty years ago [1] following the development of a technique where complex protein mixtures could be separated at high resolution bytwo-dimensional polyacrylamide gel electrophoresis (2DE) [2, 3].
However, it wasnot until 1995, that the term ‘proteome’, defined as the PROTEin complement ofa genOME, was first coined by Wilkins working as part of a collaborative team atMacquarie (Australia) and Sydney Universities (Australia) [4, 5].With the advent of rapid gene sequencing techniques, the genomes from nearly100 species have been completed at the time of writing and a total of more than600 genome sequencing projects are in progress (GOLD, Genomics Online Database, http://igweb.integratedgenomics.com/GOLD/). However, genomic information, though a powerful resource, does not attribute function to genes.
Althoughgenomic approaches provide information on all of the possible ways in which anorganism may express its genes, it does not provide insights into the ways inwhich an organism may modify its pattern of gene expression in response to particular conditions. In addition it is now apparent that one gene does not encode asingle protein, because of processes such as alternative mRNA splicing, RNA editing and post-translational protein modification. Therefore the functional complexity of an organism far exceeds that indicated by its genome sequence alone.To overcome this problem, gene expression can be studied directly either at themRNA level or at the protein level. Powerful techniques such as cDNA and oligonucleotide micro-arrays and serial analysis of gene expression (SAGE) make rapidscreening of mRNA expression possible.
However, there is often a poor correlation between mRNA abundance and the quantity of the corresponding functionalprotein present within a cell [6, 7]. In addition concomitant co- and post-translational modification (PTM) events can result in a diversity of protein productsfrom a single open reading frame. These modifications can include phosphorylation, sulphation, glycosylation, hydroxylation, N-methylation, carboxymethylation,acetylation, prenylation and N-myristolation.Proteomic and Genomic Analysis of Cardiovascular Disease.Edited by Jennifer E.