6 (509325)
Текст из файла
tigtu.ruСкачано с http://antigtu.ruЗадача Кузнецов Аналитическая геометрия 1-6Условие задачиНаписать разложение векторапо векторамРешениеимеет вид:Получаем:аносИли в виде системы:anИскомое разложение вектора:СкачК первой строке прибавим вторую умноженную наК первой строке прибавим третью::tigtu.ruanИскомое разложение:Задача Кузнецов Аналитическая геометрия 2-6Условие задачиРешениеи, построенные по вектораманосКоллинеарны ли векторыиачВекторы коллинеарны если существует такое число такое, чтоколлинеарны если их координаты пропорциональны.Находим:СкПолучаем:Значит векторыи- не коллинеарны.?.
Т.е. векторыУсловие задачииНайти косинус угла между векторамиРешениеи:между векторамии:аносНаходим косинус угла.anНайдемtigtu.ruЗадача Кузнецов Аналитическая геометрия 3-6Т.е. косинус угла:ачи следовательно уголЗадача Кузнецов Аналитическая геометрия 4-6Условие задачиСкВычислить площадь параллелограмма, построенного на векторахи.tigtu.ruРешениеПлощадь параллелограмма, построенного на векторахпроизведения:и, численно равна модулю их векторного, используя его свойства векторного произведения:ВычисляемanВычисляем площадь:Т.е.
площадь параллелограмма, построенного на векторахиравна.Задача Кузнецов Аналитическая геометрия 5-6аносУсловие задачиКомпланарны ли векторыРешение,и?Для того чтобы три вектора были компланарны (лежали в одной плоскости или параллельныхСкачплоскостях), необходимо и достаточно, чтобы их смешанное произведениенулю.Так как, то векторы,икомпланарны.было равноУсловие задачиtigtu.ruЗадача Кузнецов Аналитическая геометрия 6-6Вычислить объем тетраэдра с вершинами в точкахвершинына грань.Решениепроведем векторы:anИз вершиныи его высоту, опущенную изаносВ соответствии с геометрическим смыслом смешанного произведения имеем:ачВычислим смешанное произведение:СкПолучаем:Так какСогласно геометрическому смыслу векторного произведения:Получаем:Объем тетраэдра:Высота:аносanТогда:tigtu.ruВычислим векторное произведение:Задача Кузнецов Аналитическая геометрия 7-6Условие задачидо плоскости, проходящей через три точкиачНайти расстояние от точки.РешениеСкНаходим уравнение плоскости, проходящей через три точкиПроведем преобразования::tigtu.ruот точкидо плоскости:anРасстояниеНаходим:аносЗадача Кузнецов Аналитическая геометрия 8-6Условие задачиНаписать уравнение плоскости, проходящей через точкуРешение.:ачНайдем векторперпендикулярно векторуСкТак как векторперпендикулярен искомой плоскости, то его можно взять в качестве векторанормали.
Поэтому уравнение плоскости будет иметь вид:tigtu.ruЗадача Кузнецов Аналитическая геометрия 9-6Условие задачиНайти угол между плоскостями:Решениемежду плоскостями определяется формулой:аносУголanДвугранный угол между плоскостями равен углу между их нормальными векторами. Нормальныевекторы заданных плоскостей:Задача Кузнецов Аналитическая геометрия 10-6Условие задачи, равноудаленной от точекачНайти координаты точкиСкРешениеНайдем расстояниеиТак как по условию задачи:, тои.tigtu.ruТаким образом.Задача Кузнецов Аналитическая геометрия 11-6Условие задачиanПусть - коэффициент преобразования подобия с центром в начале координат. Верно ли, что точкапринадлежит образу плоскости ?аносРешениеПри преобразовании подобия с центром в начале координат плоскостьи коэффициентомпереходит в плоскость.
Находим образ плоскостиТак какв уравнениеачПодставим координаты точки, то точка:принадлежит образу плоскостиСкЗадача Кузнецов Аналитическая геометрия 12-6Условие задачиНаписать канонические уравнения прямой..:Канонические уравнения прямой:,tigtu.ruРешение:аносНайдем направляющий векторanгде- координаты какой-либо точки прямой, а- ее направляющийвектор.Так как прямая принадлежит одновременно обеим плоскостям, то ее направляющий векторортогонален нормальным векторам обеих плоскостей.
Нормальные вектора плоскостей:СкачНайдем какую-либо точку прямой. Пусть, тогдаtigtu.ruСледовательно, точкапринадлежит прямой.Получаем канонические уравнения прямой:Задача Кузнецов Аналитическая геометрия 13-6Условие задачиНайти точку пересечения прямой и плоскости.anРешениеаносЗапишем параметрические уравнения прямой.Подставляем в уравнение плоскости:СкачНайдем координаты точки пересечения прямой и плоскости:Получаем:Условие задачиНайти точкусимметричную точкеРешениеtigtu.ruЗадача Кузнецов Аналитическая геометрия 14-6относительно прямой.аносТогда уравнение искомой плоскости:anНаходим уравнение плоскости, которая перпендикулярна данной прямой и проходит через точкуТак плоскость перпендикулярна заданной прямой, то в качестве ее вектора нормали можно взятьнаправляющий вектор прямой:пересечения прямой и плоскости.Найдем точкуЗапишем параметрические уравнения прямой.СкачПодставляем в уравнение плоскости:Найдем координаты точки пересечения прямой и плоскости:.Так какявляется серединой отрезка, тоСкачаносanПолучаем:tigtu.ruПолучаем:.
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.