Часть 1. Искусственные нейронные сети в задачах системного анализа (1245270), страница 16
Текст из файла (страница 16)
Cybernetics. – 1976. – Vol. 23. – P. 121 – 134.42. Grossberg S. Adaptive pattern classification and universal recording II:Feedback, expectation, offaction, and illusions // Biolog. Cybernetics. –1976. – Vol. 23. – P. 187 – 202.43. Hagan M.T., Menhaj M.B. Training feedforward networks with theMarquardt algorithm // IEEE Transactions on Neural Networks.
– 1994. –Vol. 5, №6. – P. 989 – 993.44. Hassibi B., Stork D.G. Second order derivatives for network pruning: optimal brain surgeon // Proceedings of the NIPS5. – San Mateo (California),1993. – P. 164 – 172.45. He X., Asada H. A new method for identifying orders of input-output models for nonlinear dynamic systems // Proc. of the American Control Conference. – San Francisco, 1993. – P. 67 – 83.10046. Hebb D.O.
The organization of behaviour: A neuropsychological theory. –N.-Y.: Wiley, 1949. – 436 p.47. Hecht-Nielsen R. Kolmogorov’s mapping neural network existence theorem // IEEE Press. – 1987. – Vol. 3. – P. 11 – 13.48. Hinton G.E., Sejnovski R.J. Learning and relearning in Bolzmann machines// Parallel Distributed Proc. – 1986. – Vol. 1. – P. 326 – 348.49. Hinton G.E., Sejnovski R.J., Ackley D.H. Boltzmann machines. – Mellon:CMUPress, 1984.
– 268 p.50. Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities // Proc. National Acad. Science. – 1982. – Vol.79. – P. 2554 – 2558.51. Hopfield J.J., Tank D.W. Neural computation of decisions in optimizationproblems // Biological Cybernetics. – 1985. – №2. – P. 141 – 152.52.
Hu M.J.C. Application of the Adaline system to weather forecasting. –Stanford: SUPress, 1964. – 436 p.53. Hunt K.J., Sbarbaro D. Neural Networks for nonlinear internal model control // IEEE proceedings. – 1991. – Vol. 138, №5. – P. 431 – 439.54.
Kohonen T. Self-Organization and Associative Memory. − New-York:Springer-Verlag, 1988. – 620 p.55. Kohonen T. Self-organized formation of topologically correct feature maps// Biolog. Cybernetics. – 1982. – Vol. 43. – P. 59 – 69.56. Kosko B. Adaptive bidirectional associative memories // Appl. Optics. −1987. – Vol. 26. – P. 4947 – 4960.57. Kosko B. Constructing an associative memory // Byte.
– 1987. – September. – P.137 – 144.58. Kwakernaak H., Sivan R. Linear optimal control systems. – New-York:Wiley Inc. – 436 p.10159. Larsen J., Hansen L.K. Generalization performance of regularized neuralnetwork models // Neural Networks for Signal Processing: Proc. of theIEEE Workshop IV. – Brussel (Belgium), 1994. – P. 42 – 51.60. LeCun Y., Kanter I. Eigenvalues of covariance matrices: application to neural-network learning // Physical Review Letters. – 1991. – Vol. 66.
– P.2396 – 2399.61. Levenberg K. A method for the solution of certain nonlinear problems inleast squares // Quart. Appl. Math. – 1944. – №2. – P. 164 – 168.62. Luky R.W. Automatic equalization for digital communications // Bell Syst.Tech. J. – 1965. – Vol. 44. – P. 547 – 578.63.
Luky R.W. Principles of Data Communication. – New-York: McGraw-Hill,1968. – 328 p.64. Malsburg С. Self-Organising of Orientation Sensitive Sells in the StriateCortex // Kibernetik. – 1973. – Vol. 14. – P. 85 – 100.65. Marquardt D. An algorithm for least-squares estimation of nonlinear parameters // SIAM J. Appl. Math.
– 1963. – №11. – P. 164 – 168.66. McCulloch W., Pitts. W. A logical calculus of the ideas immanent in nervous activity // Bulletin of mathematical biophisics. – 1943. – Vol. 5. – P.115 – 133.67. Minsky M., Papert S. Perceptrons: An introduction to computational geometry. – Cambridge (Massachusets): Adison – Wesly, 1969. – 262 p.68.
Nilsson N. Learning Machines. – New York: McGraw-Hill, 1965. – 418 p.69. Parallel Distributed Processing / Eds. D.E. Rumelhart , J.I. McClelland. –Cambridge, MA: M.I.T. Press, 1986. – 688 p.70. Parker D. Learning-Logic. – Stanford (CA): Stanford University, 1982. –214 p.71. Pederson M.W., Hansen L.K. Recurrent networks: second order propertiesand pruning // Neural Information Processing Systems: Proc. of th7-th Conference.
– Vienna (Austria), 1994. – P. 673 – 680.10272. Peterson C. Determining dependency structures and estimating nonlinearregression errors without doing regression // International Journal of Modern Physics. – 1995. – Vol. 611. – P. 18 – 31.73. Rosenblatt F. Principles of Neurodinamics: Perceptron and the Theory ofBrain Mechanisams. – Washington DC: Spartan Books, 1962. – 480 p.74. Rosenblatt F. Two theorems of statistical separability in the perceptron //Mechanization of Thought Processes Proceedings.: Proc. of Symposiumheld at the National Phisical Laboratory.
– London, 1959. – P. 421 − 456.75. Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representation by error propagation // Parallel Distributed Processing. – 1986. – Vol.1, №8. – P. 318 – 362.76. Sjoberg J., Ljung L. Overtraining, regularization, and searching for theminimum in neural networks // Adaptive Systems in Control and SignalProcessing: Preprint IFAC Symposium.
– Grenoble (France), 1992. –P. 669 – 674.77. Soderstrom T., Stoica P. System identification. – Englewood Cliffs, NewJersey: Prentice-Hall, 1989. – 440 p.78. Sondhi M.M. An adaptive echo canceller // Bell Syst. Tech. J. – 1967. –Vol. 46. – P. 497 – 511.79. Stark L., Okajima M., Whipple G.H. Computer Pattern Recognition Techniques: Electrografic Diagnosis // Commun. Ass.
Comput. Mach.– 1962. –Vol. 5. – P. 527 – 532.80. Steihbuch K., Piske V.A. Learning matrices and their applications // IEEETrans. Electron. Comput. – 1963. – Vol. EC–12, Dec. – P. 846 – 862.81. Talbert L.R.A. Real-time adaptive speech recognition system. – Stanford:SUPress, 1963. – 562 p.82. Werbos P. Beyond Regression: New Tools for prediction and Analysis inthe Behavioral Sciences. – Cambridge (MA): Harvard University, 1974. –212 p.10383. Widrow B.
Adaptive inverse control // Autumatic Control: Proc. 2d Int. Fed.Of Autumatic Control Workshop. – Lund (Sweden), 1986. – P. 1 – 5.84. Widrow B. Adaptive noise cancelling: Principles and applications // Proc.IEEE. – 1975. – Vol. 63. – P. 1692 – 1716.85. Widrow B. Networks of adaline neurons. – Washington DC: SpartanBooks, 1962. − 244 p.86. Widrow B. The original adaptive neural net broom – balancer // Proc. IEEEIntl. Symp. Circuits and Systems.
– Phil. (PA), 1987. – P. 351 – 357.87. Widrow B., Mantey P., Griffiths L. Adaptive antenna systems // Proc. IEEE.– 1967. – Vol. 5. – P. 2143 – 2159.88. Widrow B., Stearns S. Adaptive Signal Processing. – Englewood Cliffs(NY): Prentice-Hall, 1985. – 396 p..