ПЗ_Диплом.Хлынов (1214915), страница 3
Текст из файла (страница 3)
4) Для классов приняты следующие обозначения: A ("advanced") - "повышенного типа"; S ("survey") - "для наблюдений". Класс В ("basic") - "начальный", не рекомендован для СИ новых типов, так как может быть исключен в следующем издании настоящего стандарта.
Класс А
Несимметрию напряжений в трехфазной системе энергоснабжения оценивают методом симметричных составляющих. В условиях несимметрии дополнительно к напряжению прямой последовательности существует, по крайней мере, одна из следующих составляющих: напряжение обратной последовательности.
Измерения основной составляющей входного сигнала проводят на основном интервале времени измерений (10 периодов для систем электроснабжения частотой 50 Гц или 12 периодов - систем частотой 60 Гц).
Примечания
1) Влияние гармоник должно быть минимизировано применением фильтра или алгоритма дискретного преобразования Фурье.
2) Оценка несимметрии только на основе среднеквадратических значений фазных напряжения не учитывает влияния угловых сдвигов на несимметрию, что может привести к непредсказуемым результатам при наличии гармоник. Оценка несимметрии на основе расчетов напряжений обратной и нулевой последовательности обеспечивает более точные и пригодные для непосредственного применения результаты.
Значение коэффициента несимметрии напряжений по нулевой последовательности по определению равно нулю при измерении междуфазных напряжений. Однако напряжения "фаза - нейтраль" или "фаза - земля" могут содержать напряжения нулевой последовательности.
При измерении трехфазного переменного напряжения, за исключением требований к значениям коэффициентов несимметрии напряжений по обратной и нулевой последовательностям, которые должны быть в пределах от 1% до 5%, инструментальная составляющая неопределенности измерений коэффициентов несимметрии по обратной и нулевой последовательности не должна превышать ±0,15%. Например, показания СИ, подключенного к трехфазной системе напряжений с коэффициентом несимметрии по обратной последовательности 1,0%, должны быть в пределах от 0,85% до 1,15%
Класс S
Коэффициент несимметрии напряжений по обратной последовательности определяют как для класса А. Определение коэффициента несимметрии по нулевой последовательности допускается, но не является обязательным.
Требования к неопределенности устанавливают так же, как для класса А. Инструментальная составляющая неопределенности измерений коэффициентов несимметрии по обратной и нулевой (при измерении) последовательности не должна превышать ±0,3%.
Класс В
Алгоритмы и методы, используемые для вычисления несимметрии напряжений, устанавливает изготовитель СИ.
Требования к неопределенности устанавливают так же, как для класса А. Инструментальная составляющая неопределенности измерений коэффициентов несимметрии (при измерении) не должна превышать ±0,3%.
1.5 Несимметрия при провале напряжения
Временное уменьшение напряжения в конкретной точке электрической системы ниже установленного порогового значения.
Провалы напряжения обычно происходят из-за неисправностей в электрических сетях или в электроустановках потребителей, а также при подключении мощной нагрузки. Провал напряжения, как правило, связан с возникновением и окончанием короткого замыкания или иного резкого возрастания тока в системе или электроустановке, подключенной к электрической сети. Провал напряжения рассматривается как электромагнитная помеха, интенсивность которой определяется как напряжением, так и длительностью. Длительность провала напряжения может быть до 1 мин. В трехфазных системах электроснабжения за начало провала напряжения принимают момент, когда напряжение хотя бы в одной из фаз падает ниже порогового значения начала провала напряжения, за окончание провала напряжения принимают момент, когда напряжение во всех фазах возрастает выше порогового значения окончания провала напряжения.
Даже очень кратковременная несимметрия напряжений может повредить нагрузку трехфазного выпрямителя или вызвать срабатывание токовой защиты. Трехфазные провалы часто бывают несимметричными. Способ быстрого обновления среднеквадратичных значений, полезен при вычислении трехфазной несимметрии во время провала. Несимметрия часто изменяется во время провала, поэтому она может быть представлена в графической форме или может быть указано максимальное значение несимметрии. Может быть полезным проанализировать отдельно нулевую последовательность, обратную последовательность и положительную последовательность основной частоты во время несимметричного провала напряжения. Этот подход дает информацию о том, как провал напряжения распространяется в электрической сети и может быть полезен для понимания одновременных провалов и выбросов в различных фазах.
2. АНАЛИЗ СПОСОБОВ СИММЕТРИРОВАНИЯ НАПРЯЖЕНИЯ
2.1.1 Методы и средства снижения несимметрии напряжений
Несимметрию напряжений, обусловленную несимметричными электроприемниками, можно ограничить до значений
как с помощью схемных решений, так и путем применения специальных симметрирующих устройств. Как известно, при соотношении мощностей КЗ в узле сети
и однофазной нагрузки
коэффициент обратной последовательности напряжений не превышает
. Поэтому целесообразно присоединять ЭП, вызывающие несимметрию, к узлам сети, где мощность КЗ удовлетворяет приведенному выше соотношению. Например, мощные однофазные ЭП можно подключать через отдельные трансформаторы к шинам 110–220 кВ, где уровень
достаточно велик. В ряде случаев снижение несимметрии напряжений может быть обеспечено рациональным распределением нагрузок.
2.1.2 Применение симметрирующих устройств
При невозможности обеспечить требуемый уровень несимметрии напряжений с помощью схемных решений применяют симметрирующие устройства (СУ). Симметрирование с помощью СУ сводится к компенсации эквивалентного тока обратной последовательности несимметричных нагрузок и, следовательно, обусловленного ими напряжения обратной последовательности. Симметрирующие устройства выполняются неуправляемыми или управляемыми в зависимости от особенностей графика нагрузки. Известно большое число схем СУ, которые имеют как электрические, так и электромагнитные связи между элементами. Каждое конкретное схемное и техническое решение СУ имеет определенные достоинства и недостатки, ограничивающие область их применения. Рассмотрим некоторые из известных СУ. Симметрирующие устройства трансформаторного типа очень разнообразны. При помощи нескольких трансформаторов или специального трансформатора, включенного определенным образом между сетью и несимметричной нагрузкой, получают необходимое напряжение на нагрузке и добиваются некоторого выравнивания линейных токов. В качестве примера на рис. 2.1 приведена схема питания двухфазной нагрузки от трансформатора Скотта и векторные диаграммы токов и напряжений. Соотношения витков трансформаторов выбираются таким образом, чтобы вторичные напряжения их были равны. По этой схеме питаются индукционные плавильные печи.
|
Рисунок 2.1- Схема и векторная диаграмма токов и напряжений при питании двухфазной нагрузки от трансформатора Скотта |
|
Симметрирующие устройства трансформаторного типа являются индивидуальными и нерегулируемыми, а их симметрирующие свойства зависят от характера нагрузки.
Симметрирующие устройства с электромагнитными связями делятся на две группы: с делителями (автотрансформаторные) и трансформаторные. В схемах с делителями мощность СУ обычно выбирается равной мощности нагрузки. С помощью переключения автотрансформаторной отпайки можно симметрировать нелинейную нагрузку с изменяющимся коэффициентом мощности. На рисунке 2.2 представлена схема с одним регулируемым элементом
. Такая схема имеет значение
.
|
|
Рисунок 2.3 - Автотрансформаторная схема с регулирующими элементами |
Рисунок 2.2 - Автотрансформаторная схема с регулируемым элементом |
На рисунке 2.3 показана схема СУ с двумя регулируемыми элементами
и
. По своим характеристикам она является более предпочтительной, чем предыдущая схема, и находит применение для нагрузок с
.
Индуктивно-емкостные СУ подключаются к сети параллельно с несимметричной нагрузкой; они представляют собой комбинацию индуктивных и емкостных элементов. Наибольшее распространение получила схема Штейнметца, показанная на рисунке 2.4. Векторная диаграмма, поясняющая работу устройства, приведена на этом же рисунке. Симметрирующее устройство Штейнметца наиболее эффективно при коэффициенте мощности нагрузки, равном единице. Поэтому при активно-индуктивной нагрузке параллельно ей подключается БК С2. Мощность реактора и БК С1 в этом случае выбирается из условия:
. (2.1)
Двухэлементное ССУ, известное в литературе как схема Штейнмеца, имеет следующие недостатки:
- невозможность бесконтактного управления емкостью без увеличения (до 1,73 мощности нагрузки) установленной мощности элементов ССУ;
- недоиспользование мощности симметрирующих элементов (на наличие двух регулируемых элементов и сложность регулирования ими, если нагрузка не чисто активная и изменяется в некотором диапазоне.
Наиболее гибкими и универсальными являются трехэлементные ССУ, которые позволяют симметрировать напряжение с заданным cosφ нагрузки.
Недостатки этих схем:
- низкий коэффициент использования оборудования (Кисп ≤ 0,866);
- увеличение числа регулируемых элементов до трех усложняет и снижает надежность ССУ.
и















