Главная » Просмотр файлов » Учебник - Аналитическая геометрия и линейная алгебра - Умнов

Учебник - Аналитическая геометрия и линейная алгебра - Умнов (1188221)

Файл №1188221 Учебник - Аналитическая геометрия и линейная алгебра - Умнов (Учебник - Аналитическая геометрия и линейная алгебра - Умнов)Учебник - Аналитическая геометрия и линейная алгебра - Умнов (1188221)2020-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

А. Е. УмновАНАЛИТИЧЕСКАЯГЕОМЕТРИЯИ ЛИНЕЙНАЯ АЛГЕБРА(). .3-,«»2011514.12(075)22.151.59 7354:(.).,. .,). ., . .54:./ . .. – 3.:, 2011. – 544 .ISBN 978-5-7417-0378-6.,.,.–-),-,..514.12(075)22.151.59 73ISBN 978- 5-7417-0378-6©©. ., 2011«()», 20113ОглавлениеОГЛАВЛЕНИЕВведение .......................................................................................От автора .....................................................................................Глава 1.Векторы и линейные операции с ними ...........§ 1.1. Матричные объекты ..............................................§ 1.2. Направленные отрезки ..........................................§ 1.3.

Определение множества векторов .......................§ 1.4. Линейная зависимость векторов ..........................§ 1.5. Базис. Координаты вектора в базисе ...................§ 1.6. Действия с векторами в координатном представлении ................................................................§ 1.7. Декартова система координат ..............................§ 1.8. Изменение координат при замене базиса и начала координат .......................................................Глава 2.Произведения векторов ......................................§ 2.1.

Ортогональное проектирование ...........................§ 2.2. Скалярное произведение векторов и его свойства .............................................................................§ 2.3. Выражение скалярного произведения в координатах .......................................................................§ 2.4. Векторное произведение векторов и его свойства .............................................................................§ 2.5.

Выражение векторного произведения в координатах .......................................................................§ 2.6. Смешанное произведение .....................................§ 2.7. Выражение смешанного произведения в координатах ...................................................................§ 2.8. Двойное векторное произведение ........................§ 2.9. Замечания об инвариантности произведенийвекторов ..................................................................810121221242834384447545457596165687072754Аналитическая геометрия и линейная алгебраГлава 3.§ 3.1.§ 3.2.§ 3.3.§ 3.4.§ 3.5.Глава 4.§ 4.1.§ 4.2.§ 4.3.§ 4.4.§ 4.5.§ 4.6.Глава 5.§ 5.1.§ 5.2.§ 5.3.§ 5.4.§ 5.5.§ 5.6.Глава 6.§ 6.1§ 6.2§ 6.3.§ 6.4.§ 6.5.§ 6.6.§ 6.7.§ 6.8.Прямая и плоскость ............................................Прямая на плоскости .............................................Способы задания прямой на плоскости ...............Плоскость в пространстве .....................................Способы задания прямой в пространстве ............Решение геометрических задач методами векторной алгебры ......................................................Нелинейные объекты на плоскостии в пространстве ..................................................Линии на плоскости и в пространстве .................Поверхности в пространстве ................................Цилиндрические и конические поверхности ......Линии второго порядка на плоскости ..................Поверхности второго порядка в пространстве ....Альтернативные системы координат ...................Преобразования плоскости ...............................Умножение матриц ................................................Операторы и функционалы.

Отображения ипреобразования плоскости ....................................Линейные операторы на плоскости .....................Аффинные преобразования и их свойства ..........Ортогональные преобразования плоскости ........Понятие группы .....................................................Системы линейных уравнений .........................Определители .........................................................Свойства определителей .......................................Разложение определителей ...................................Правило Крамера ...................................................Ранг матрицы .........................................................Системы m линейных уравнений с n неизвестными ................................................................Фундаментальная система решений ....................Элементарные преобразования.

Метод Гаусса ...797984931031071191191241271301381411471471581611691841891911911921992052082132162275ОглавлениеГлава 7.Линейное пространство .....................................§ 7.1. Определение линейного пространства ................§ 7.2. Линейная зависимость, размерность и базис влинейном пространстве ........................................§ 7.3. Подмножества линейного пространства .............§ 7.4. Операции с элементами линейного пространства в координатном представлении .......................§ 7.5. Изоморфизм линейных пространств ...................Глава 8Линейные зависимости в линейномпространстве ........................................................§ 8.1. Линейные операторы .............................................§ 8.2.

Действия с линейными операторами ...................§ 8.3. Координатное представление линейных операторов .......................................................................§ 8.4. Область значений и ядро линейного оператора ..§ 8.5. Инвариантные подпространства и собственныевекторы ...................................................................§ 8.6. Свойства собственных векторов и собственныхзначений .................................................................§ 8.7. Линейные функционалы .......................................Глава 9.Нелинейные зависимостив линейном пространстве ..................................§ 9.1.

Билинейные функционалы ....................................§ 9.2. Квадратичные функционалы ................................§ 9.3. Исследование знака квадратичного функционала .............................................................................§ 9.4. Инварианты линий второго порядка на плоскости ...........................................................................§ 9.5. Экстремальные свойства квадратичных функционалов .................................................................§ 9.6. Полилинейные функционалы ...............................Глава 10.

Евклидово пространство ...................................§ 10.1. Определение и основные свойства ....................§ 10.2. Ортонормированный базис. Ортогонализациябазиса ...................................................................2352352392442512542672672692752832963033173253253293393483533543563563606Аналитическая геометрия и линейная алгебра§ 10.3. Координатное представление скалярного произведения .............................................................§ 10.4.

Ортогональные матрицы в евклидовом пространстве ..............................................................§ 10.5. Ортогональные дополнения и ортогональныепроекции в евклидовом пространстве ….…......§ 10.6. Сопряженные операторы в евклидовом пространстве ..............................................................§ 10.7. Самосопряженные операторы ...........................§ 10.8. Ортогональные операторы .................................Глава 11.

Унитарное пространство ...................................§ 11.1. Определение унитарного пространства ............§ 11.2. Линейные операторы в унитарном пространстве .......................................................................§ 11.3. Эрмитовы операторы .........................................§ 11.4. Эрмитовы функционалы. Среднее значение идисперсия эрмитова оператора ..........................§ 11.5.

Соотношение неопределенностей .....................Глава 12. Прикладные задачи линейной алгебры ..........§ 12.1. Приведение квадратичных функционалов кдиагональному виду ...........................................§ 12.2. Классификация поверхностей второго порядка§ 12.3. Аппроксимация функций многочленами ..........Приложение 1.Свойства линий второго порядка наплоскости ...................................................Прил. 1.1Вырожденные линии второго порядка ….Прил. 1.2Эллипс и его свойства ................................Прил.

1.3. Гипербола и ее свойства ............................Прил. 1.4. Парабола и ее свойства ..............................Приложение 2.Свойства поверхностейвторого порядка .......................................Прил. 2.1. Вырожденные поверхности второго порядка ............................................................Прил.

2.2. Эллипсоид ...................................................Прил. 2.3. Эллиптический параболоид .......................3623683723783833914004004034054104134154154314354434434454524594654654664677ОглавлениеПрил. 2.4.Прил. 2.5.Прил. 2.6.Прил. 2.7.Приложение 3.Приложение 4.Прил. 4.1.Прил.

4.2.Прил. 4.3.Прил. 4.4.Прил. 4.5.Гиперболический параболоид ...................Однополостный гиперболоид ....................Двуполостный гиперболоид .....................Поверхности вращения .............................Комплексные числа .................................Элементы тензорного исчисления ........Замечания об определении объектов влинейном пространстве .............................Определение и обозначение тензоров ......Операции с тензорами ...............................Тензоры в евклидовом пространстве .......Тензоры в ортонормированном базисе.....Литература ..................................................................................Предметный указатель .............................................................4694724744754784884884965045155205285298Аналитическая геометрия и линейная алгебраВВЕДЕНИЕОтличительной чертой подготовки специалистов в Московскомфизико-техническом институте − системы "Физтеха", является сочетание интенсивности обучения с высоким уровнем детализации и глубины изучаемых предметов, в первую очередь естественных наук.Кафедра высшей математики МФТИ как важный элемент этой системы с момента образования института продолжает вносить существенный вклад в ее формирование и совершенствование.В активе кафедры колоссальный опыт в виде учебных курсов, оригинальных лекций по многим разделам современной математики, системы заданий, методических разработок, приемов, внутрикафедральных материалов, наконец, педагогического фольклора.

Характеристики

Тип файла
PDF-файл
Размер
5,59 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее