Главная » Просмотр файлов » 6 Combination of decision procedures

6 Combination of decision procedures (1185842), страница 6

Файл №1185842 6 Combination of decision procedures (Презентации лекций) 6 страница6 Combination of decision procedures (1185842) страница 62020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Is it SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories25/44Example, contIPurified formula is F1 ∧ F2 where:F1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIWhich variables are shared? allICheck sat of F1 .

Is it SAT? yesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories25/44Example, contIPurified formula is F1 ∧ F2 where:F1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIWhich variables are shared? allICheck sat of F1 . Is it SAT? yesICheck sat of F2 . Is it SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories25/44Example, contIPurified formula is F1 ∧ F2 where:F1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIWhich variables are shared? allICheck sat of F1 .

Is it SAT? yesICheck sat of F2 . Is it SAT? yesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories25/44Example, contIPurified formula is F1 ∧ F2 where:F1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIWhich variables are shared? allICheck sat of F1 .

Is it SAT? yesICheck sat of F2 . Is it SAT? yesINow, for each pair of shared variable xi , xj , we query whether F1 or F2imply xi = xjVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories25/44Example, contF1 :F2 :Iw1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zConsider the query x = y – is it implied by either F1 or F2 ?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :Iw1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yINow, propagate this to T= , so F10 becomes:F10 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yINow, propagate this to T= , so F10 becomes:F10 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yICheck sat of F10 .

Is it SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yINow, propagate this to T= , so F10 becomes:F10 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yICheck sat of F10 . Is it SAT? yesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yINow, propagate this to T= , so F10 becomes:F10 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yICheck sat of F10 .

Is it SAT? yesIAre we done?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z )w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zIConsider the query x = y – is it implied by either F1 or F2 ? implied by F2Iy + z ≤ x ∧ 0 ≤ z imply 0 ≤ z ≤ x − y, i.e., y ≤ xISince we also have x ≤ y, TQ implies x = yINow, propagate this to T= , so F10 becomes:F10 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yICheck sat of F10 . Is it SAT? yesIAre we done? noVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories26/44Example, contF1 :F2 :Iw1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zSince F1 changed, need to check if it implies any new equalityVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality? yes, w1 = w2Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality? yes, w1 = w2INow, we add w1 = w2 to F2 :F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality? yes, w1 = w2INow, we add w1 = w2 to F2 :F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IWe recheck sat of F2 .

Is it SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality? yes, w1 = w2INow, we add w1 = w2 to F2 :F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IWe recheck sat of F2 . Is it SAT? yesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ zISince F1 changed, need to check if it implies any new equalityIDoes it imply a new equality? yes, w1 = w2INow, we add w1 = w2 to F2 :F2 : w3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IWe recheck sat of F2 .

Is it SAT? yesIStill not done b/c need to check if F2 implies any new equalitiesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories27/44Example, contF1 :F2 :Iw1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2Consider the query w3 = z ?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories28/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IConsider the query w3 = z ?Iw3 = w1 − w2 and w1 = w2 imply w3 = 0Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories28/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IConsider the query w3 = z ?Iw3 = w1 − w2 and w1 = w2 imply w3 = 0ISince x = y, y + z ≤ x implies z ≤ 0Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories28/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IConsider the query w3 = z ?Iw3 = w1 − w2 and w1 = w2 imply w3 = 0ISince x = y, y + z ≤ x implies z ≤ 0ISince z ≤ 0 and 0 ≤ z , we have z = 0Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories28/44Example, contF1 :F2 :w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = yw3 = w1 − w2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ w1 = w2IConsider the query w3 = z ?Iw3 = w1 − w2 and w1 = w2 imply w3 = 0ISince x = y, y + z ≤ x implies z ≤ 0ISince z ≤ 0 and 0 ≤ z , we have z = 0IThus, TQ answer ”yes” for query w3 = zVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories28/44Example, contINow, propagate w3 = z to F1 :F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = y ∧ w3 = zVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories29/44Example, contINow, propagate w3 = z to F1 :F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = y ∧ w3 = zIIs this sat?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories29/44Example, contINow, propagate w3 = z to F1 :F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = y ∧ w3 = zIIs this sat?INo, because w3 = z implies f (w3 ) = f (z )Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories29/44Example, contINow, propagate w3 = z to F1 :F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = y ∧ w3 = zIIs this sat?INo, because w3 = z implies f (w3 ) = f (z )IThis contradicts f (w3 ) 6= f (z )Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories29/44Example, contINow, propagate w3 = z to F1 :F1 : w1 = f (x ) ∧ w2 = f (y) ∧ f (w3 ) 6= f (z ) ∧ x = y ∧ w3 = zIIs this sat?INo, because w3 = z implies f (w3 ) = f (z )IThis contradicts f (w3 ) 6= f (z )IThus, original formula is UNSATVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories29/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesIConsider the following TZ ∪ T= formula:1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesIConsider the following TZ ∪ T= formula:1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)IIs this formula SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesIConsider the following TZ ∪ T= formula:1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)IIs this formula SAT? noVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesIConsider the following TZ ∪ T= formula:1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)IIs this formula SAT? noILet’s see what happens if we use technique described so farVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Non-Convex TheoriesIUnfortunately, technique discussed so far does not work for non-convextheoriesIConsider the following TZ ∪ T= formula:1 ≤ x ∧ x ≤ 2 ∧ f (x ) 6= f (1) ∧ f (x ) 6= f (2)IIs this formula SAT? noILet’s see what happens if we use technique described so farIIf we purify, we get the following formulas:F1 :F2 :Vijay Ganesh(Original notes from Isil Dillig),f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories30/44Example, contF1 :F2 :If (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2Is F1 SAT?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :If (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2Is F1 SAT? yesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :IIs F1 SAT? yesIIs F2 SAT?Vijay Ganesh(Original notes from Isil Dillig),f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :IIs F1 SAT? yesIIs F2 SAT? yesVijay Ganesh(Original notes from Isil Dillig),f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2IIs F1 SAT? yesIIs F2 SAT? yesIDoes F1 imply a new equality by itself?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2IIs F1 SAT? yesIIs F2 SAT? yesIDoes F1 imply a new equality by itself? noVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2IIs F1 SAT? yesIIs F2 SAT? yesIDoes F1 imply a new equality by itself? noIDoes F2 imply a new equality by itself?Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2IIs F1 SAT? yesIIs F2 SAT? yesIDoes F1 imply a new equality by itself? noIDoes F2 imply a new equality by itself? noVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Example, contF1 :F2 :f (x ) 6= f (w1 ) ∧ f (x ) 6= f (w2 )1 ≤ x ∧ x ≤ 2 ∧ w1 = 1 ∧ w2 = 2IIs F1 SAT? yesIIs F2 SAT? yesIDoes F1 imply a new equality by itself? noIDoes F2 imply a new equality by itself? noIThus technique discussed so far returns sat, although formula in unsatVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories31/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories32/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesIBut it doesn’t have to imply any single equality on its ownVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories32/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesIBut it doesn’t have to imply any single equality on its ownIThus, it is not enough to query individual equality relations betweenvariablesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories32/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesIBut it doesn’t have to imply any single equality on its ownIThus, it is not enough to query individual equality relations betweenvariablesIWe also have to query and propagate disjunctions of equalitiesVijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories32/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesIBut it doesn’t have to imply any single equality on its ownIThus, it is not enough to query individual equality relations betweenvariablesIWe also have to query and propagate disjunctions of equalitiesITwo questions:Vijay Ganesh(Original notes from Isil Dillig),ECE750T-28: Computer-aided Reasoning for Software EngineeringLecture 16: Decision Procedures for Combination Theories32/44Nelson-Oppen with Non-Convex TheoriesIProblem is that in non-convex theories, a formula might imply adisjunction of equalitiesIBut it doesn’t have to imply any single equality on its ownIThus, it is not enough to query individual equality relations betweenvariablesIWe also have to query and propagate disjunctions of equalitiesITwo questions:1.

Характеристики

Тип файла
PDF-файл
Размер
745,74 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6521
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее