20151014_MSU_rnd (1185575)

Файл №1185575 20151014_MSU_rnd (Лекции)20151014_MSU_rnd (1185575)2020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Псевдослучайные числа для расчетов намногопроцессорных системахЯкобовский Михаил Владимировичпроф., д.ф.-м.н.Институт прикладной математикиим. М.В.Келдыша РАН, МоскваПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.1Применение последовательностей случайных ипсевдослучайных чиселЧисленное моделирование– Методы молекулярной динамики– Генетические алгоритмыЧисленные методы– Многомерная многоэкстремальная оптимизация– Определение многомерных интеграловПринятие решения Игры Лотереи…Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.2Определение площади фигуры140000120000100000800006000040000200000020000400006000080000100000 120000 140000Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.3Последовательный алгоритмM=0;140000for(i=0;i<N;i++)120000{X=rand();100000Y=rand();Если (точка (X,Y) принадлежит фигуре)80000то M++;60000}S=130000*130000*M/N;400002000000200004000060000Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.80000100000 120000 1400004Параллельный алгоритм для P процессоровКаждый процессор определяет число mrank«своих» N/P точек, попавших внутрь фигуры2.

Найдем общее число точек, попавших внутрьфигуры1.M P 1 mrankrank 03.S=S0*M/N;1400001400001200001200001000001000008000080000600006000040000400002000020000000500001000001500000Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.500001000001500005Другой параллельный алгоритм, на основе методагеометрического параллелизмаВозможенбольшойдисбаланснагрузки140000120000100000800006000040000200000020000400006000080000100000 120000 140000Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.6ВопросыДолжен ли ответ параллельной программы в точностисовпадать с ответом последовательной версии?НЕТГде взять нужноеколичество разных «своих»элементов?Физический генератор?Нельзя обеспечитьвопроизводимость.Как обеспечитьуверенность всохранении свойствгенератора?ДАКаким образом на каждом из процессороввычислить значения именно «своих»элементов, не вычисляя значений чужих?Брать на процессоре с номером rankчисла с номерами rank+P*IКак вычислять каждое P-ое число?Вычислять на процессоре с номеромrank числа из диапазона(2N/P)*rank … (2N/P)*(rank+1)-1Как попасть в начало диапазона?Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.7«Аппаратный» генератор СЧИнструкция rdrand.

Архитектура Ivy Bridgehttp://www.securitylab.ru/analytics/435181.phpunsigned int __builtin_ia32_rdrand32_step (unsigned int *);http://gcc.gnu.org/onlinedocs/gcc/X86-Built-inFunctions.html#X86-Built-in-FunctionsTHE INTEL® RANDOM NUMBER GENERATORCRYPTOGRAPHY RESEARCH, INC. WHITE PAPERPREPARED FOR INTEL CORPORATION Benjamin Jun andPaul Kocher April 22, 1999Нарушение идентичности размещения точекЕсли брать на процессоре с номером rank числас номерами rank+P*j, то– При P=1: (0,1), (2,3), (4,5), (6,7), (8,9), (10,11)– При P=2:• У первого процесса: (0,2), (4,6) (8,10)• У второго процесса: (1,3), (5,7), (9,11).Идентичность точек нужна:– Для получения одинакового результата– Для упрощения отладки– Для сохранения свойств последовательности• x1 x2 x3 x4 x5 x6 x7 x8 x9 …• x2 x4 x6 x8 x10 …Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.9Метод leapfrog генерации последовательностипсевдослучайных чиселОдин процессор1379253561426895Два процессора1 7 2 3 6 4 6 9 3 9 5 5 1 2 8 5Три процессора1379253561426895137925356142689575629Метод leapfrog генерации последовательностипсевдослучайных чисел70u(k)=(5u(k-1)+1)mod6460v(k)=u(4k)=(49v(k-1)+28)mod645040302010015913172125293337414549Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.5357616511Слу чай наяпос ледов ате льность ………70v(k)=(49v(k-1)+28)mod64605040302010015913172125293337414549Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.535761651213Решетка p=100%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.14Перколяционная решетка p=90%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.15Перколяционная решетка p=80%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.16Перколяционная решетка p=70%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.17Перколяционная решетка p=60%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.18Перколяционная решетка p=50%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.19Перколяционная решетка p=40%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.20Перколяционная решетка p=30%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.21Перколяционная решетка p=20%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.22Перколяционная решетка p=10%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.23Перколяционная решетка p=0%Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.24Генерация псевдослучайных чисел• Достаточная длина периода последовательностипсевдослучайных чиселСогласованность определениямножества открытых ребер припараллельной обработке Возможность определениялюбого элементапоследовательности за короткое,не зависящее от номераэлемента, времяПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.25Генерация псевдослучайных чиселлинейные конгруэнтные генераторы[Деррик Генри Леммер (Derrick Henry Lehmer), 1948]U n 1  aU n  c mod mс=1mod2, a=1mod4, m=2k -> T=mПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.26,Вычисление элемента с номером n a 1c mod mU n  a U 0   a 1 nnПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.27Использование для векторных компьютеровleapfrogНомер шага0 1230+P 0+2P 0+3P 0+4P1+P 1+2P 1+3P 1+4P2+P 2+2P 2+3P 2+4P3+P 3+2P 3+3P 3+4P4+P 4+2P 4+3P 4+4P....... n an 1  c  mod mU n  a U 0   a 1  na1 nc mod mA  a mod m C   a 1 U n   AU 0  C mod mU P i   AU i  C mod mU P i 1   AU i 1  C mod mПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.28Как быстро вычислить? a 1c mod mU n  a U 0   a 1 nna  b  mod m  a mod m  b mod m  mod mkm  r   tm  q   k  t m  r  qab  mod m  a mod m b mod m mod mkm  r tm  q   ktm  kq  rt m  rqПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.29Вычислить a^nЗа log(n) шаговa mod m nan  n 2   n   2      mod m n  n2 n  a   mod m  a  2  mod m  mod ma a1376a43 33a a2 2a21a21 21Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.a30Бинарное умножение13  8  4  113  1 2  1  2  0  2  1 21310  110123a a138  4 121a a a8401Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.31Вычислить a^n за O(logn) операций2*log(n) операцийa153 aa2*76a a  a a aa222*92*38 2a a   a  a aa 82222*192 2Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.2232,Как вычислить быстро? a 1c mod mU n  a U 0   a 1 nnПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.33,Разложение дроби a 1c mod mU n  a U 0   a 1 nna 1  a a 1  a 1ntktn  k  t k  n 2Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.34Понижение степени разложением дроби t a k  1 a t  1   an 1 c mod m   ac  mod m a 1 a 1   a 1  t a ak 1  at 1   c  mod mm a 1 m  a 1 m   k  n 2t  nkПсевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.35Случайные точкиПоследовательностьxn1  845xn  2625 mod 1024512 точек вида x2i , x2i 1 лежат на несколькихпрямых1200100080060040020000200400600Псевдослучайные числа для расчетов на многопроцессорных системах© Якобовский М.В.8001000120038Линейные конгруэнтные генераторы [Лемер, 1948]При с=0 d-мерные точки расположены не более чемв d d!m гиперплоскостях[G.

Характеристики

Тип файла
PDF-файл
Размер
3,19 Mb
Материал
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее