Главная » Просмотр файлов » Лекция 2. Линейная машина_ теория Вапника-Червоненкиса

Лекция 2. Линейная машина_ теория Вапника-Червоненкиса (1185279)

Файл №1185279 Лекция 2. Линейная машина_ теория Вапника-Червоненкиса (2014 Лекции (Сенько))Лекция 2. Линейная машина_ теория Вапника-Червоненкиса (1185279)2020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Лекция 2Задачи прогнозирования,Линейная машина, Теоретические методы оценкиобобщающей способности,Лектор – Сенько Олег ВалентиновичКурс «Математические основы теории прогнозирования»4-й курс, III потокСенько Олег Валентинович ()МОТП, лекция 21 / 28Содержание лекции1Пример модели распознавания - Линейная машина2Теоретические методы оценки обобщающей способностиСенько Олег Валентинович ()МОТП, лекция 22 / 28Пример модели распознавания - Линейная машинаf = {A : Xe → Ye }, внутри которогоМножество алгоритмов Wпроизводится поиск оптимального алгоритма прогнозирования, вместесо способом решения оптимизационной задачи будем называтьметодом прогнозирования или методом распознавания, еслипрогнозируемая величина принадлежит конечному множеству. Вкачестве примера рассмотрим известный метод решения задачираспознавания – Линейная машинаСенько Олег Валентинович ()МОТП, лекция 23 / 28Пример модели распознавания - Линейная машинаМетод «Линейная машина» предназначен для решения задачираспознавания с классами K1 , .

. . , KL . Алгоритм распознавания имеетследующий вид. В процессе обучения классам K1 , . . . , KL ставятся всоответствие линейные функции от переменных X1 , . . . , Xn :f1 (X1 , . . . , Xn ) = w01 + w11 X1 + . . . + wn1 Xn..................fL (X1 , . . . , Xn ) =Сенько Олег Валентинович ()w0L+w1L X1МОТП, лекция 2+ . . . + wnL Xn .4 / 28Прогнозирования по прецендентамТаким образомраспознаваниязадаётся матрицей алгоритмw10 . . . w1nпараметров  . . . .

. . . . . wL. . . wLn0Пусть требуется распознать объект s∗ , описание которого задаётсявектором x∗ . Вычисляются значения функций f1 , . . . , fL в точке x∗ .Объект s∗ будет отнесён классу Ki , если выполняется наборнеравенствfi (x∗ ) > fj (x∗ ),где j ∈ {1, . . . , L}\{i}.Сенько Олег Валентинович ()МОТП, лекция 25 / 28Линейная машинаМаксимальная точность на выборке S̃t соответствует выполнениюмаксимального числа блоков неравенств:fJ(1) (x1 ) > fi (x1 ), i ∈ {1, . . . , L}\{J(1)}(1)....................................fJ(m) (xm ) > fi (xm ), i ∈ {1, .

. . , L}\{J(m)}.Каждый из блоков соответствует одному из объектов выборки S̃t ивключает L − 1 неравенств. Таким образом суммарное числонеравенств во всех блоках составляет m(L − 1). Каждое из неравенствиз системы (1) соответствует сравнению оценки вектора xr за классKJ(r) с оценкой за класс Ki 6= KJ(r) .Сенько Олег Валентинович ()МОТП, лекция 26 / 28Линейная машина. ОбучениеРассмотрим неравенство t системы, соответствующее блоку с номеромr, в котором производится сравнение оценки за класс KJ(r) с оценкойза класс Ki .

Очевидно, что t и i связаны равенствами:t = (r − 1)(L − 1) + j, j < J(r)t = (r − 1)(L − 1) + j − 1, j > J(r)Неравенство c номером t можно переписать в видеL XnXi=1 h=1zhit whi >LXw0i z0it ,i=1При этом zhit = xh r и z0it = 1 при i = J(r),zhit = −xh r и z0it = −1 при i = j. zhit = 0 и z0it = 0 при i 6= j и i 6= J(r).Сенько Олег Валентинович ()МОТП, лекция 27 / 28Линейная машина. ОбучениеТо есть мы получаем систему неравенств:L XnXi=1 h=1zhit whi>LXw0i z0it , t = 1, . . . , m(L − 1)(2)i=1При этом коэффициенты из множества {zhit | i = 1, . .

. , L, h = 1, . . . , n}однозначно выражаются через t. Для поиска максимальнойсовместной подсистемы блоков неравенств системы (2) используетсярелаксационный алгоритм На начальном этапекаждое из уравненийqPL Pnit 2системы (2) нормируется на величину Dt =i=0h=0 (zh )Сенько Олег Валентинович ()МОТП, лекция 28 / 28Линейная машина. ОбучениеВ результате от системы неравенств (2) мы переходим к системеL XnXi=1 h=1ẑhit whi >LXẑh0t , t = 1, . . .

, m(L − 1)(3)i=1где ẑhit = zhit /Dt ,h = 0, . . . , n, i = 1, . . . , L Релаксационный алгоритмсостоит в вычислении релаксационной последовательности матрицискомых коэффициентов {whj | j = 1, . . . , n; h = 1, . . . , n}:gk , . . .g0 , Wg1 , . . .

, WWСенько Олег Валентинович ()МОТП, лекция 29 / 28Линейная машина. Обучениеf k,При этом на итерации k производится коррекция матрицы Wполученных на предыдущей итерацииf k+1 = Wf k + µk × ∆ k ,Wгде скалярая величина µk и матрица ∆k вычисляются поневыполненным неравенствам из системы (3). Пусть Ie((k) - множествонеравенств,P которые остались невыполненными на итерации k-1. Тогда(k)∆ = t∈Ie((k) dt , где dt - матрица размерности (n + 1)L , в позиции(h, j) которой стоит коэффициент перед whj в уравнении с номером tиз системы (3).Сенько Олег Валентинович ()МОТП, лекция 210 / 28Линейная машина. ОбучениеКоэффициент µk пропорционален суммарной величине нарушениянеравенств из набора Ie((k) , нормированной на сумму квадратовкоэффициентов матрицы ∆(k)Pµk =Сенько Олег Валентинович ()t∈IekPPL Pnitit i{ Li=1 ẑ0 −i=1h=1 ẑh wh }PL Pn2i=1h=1 (∆ij )МОТП, лекция 2(4)11 / 28Линейная машина.

ОбучениеПроцесс поиска решений. Задаётся произвольная начальная точка. Вначале каждой итерации подсчитывается число полностьювыполненных блоков неравенств. Если оно максимально относительноgkвсех предыдущих итераций, то текущее приближение Wзапоминается как лучшее на данный момент решение. Процесспродолжается до выполнения одного из критериев остановки:Отсутствие невыполненных блоков неравенств;Число итераций превысило некоторую заранее заданнуювеличину;В течение нескольких итераций число полностью выполненныхблоков неравенств не изменяется.Сенько Олег Валентинович ()МОТП, лекция 212 / 28Линейная машина.

ПримерИмеется задача распознавания с 3-я классами и 2-я признаками.Предполагается, что с использованием метода ЛМ для каждого классанайдены линейные разделяющие функции:f1 (X1 , X2 ) = 4 + 2X1 − X2 ;f2 (X1 , X2 ) = −2 + X1 − 3X2 ;f3 (X1 , X2 ) = 1 + X1 − 2X2 .Область, где одновременно выполняются неравенстваf1 (X1 , X2 ) > f2 (X1 , X2 );f1 (X1 , X2 ) > f3 (X1 , X2 );cоответствует классу 1.Сенько Олег Валентинович ()МОТП, лекция 213 / 28Линейная машина. ПримерПоследняя система эквивалентна неравенствам6 + X1 + 2X2 > 0 (I),3 + X1 + X2 > 0 (II).Данные неравенства задают граничные прямые на плоскости, которыеобозначены римскими цифрами (I) и (II) соответственно.

Область наплоскости, соответствующая классу 1, обозначена краснымиквадратиками. Предположим, что точка на плоскости не принадлежитклассу 1. Тогда она принадлежит классу 2, если выполняетсянеравенство:f1 (X1 , X2 ) > f3 (X1 , X2 ),которое эквивалентно неравенству X2 < −3. Область на плоскости,соответствующая классу 2, обозначена зелёными треугольниками.Область, соответствующая классу 3 обозначена синими кружками.Сенько Олег Валентинович ()МОТП, лекция 214 / 28Линейная машина.Рис 1. Пример распознавания с помощью метода - Линейная машинаСенько Олег Валентинович ()МОТП, лекция 215 / 28Теоретические подходы к исследованию обобщающейспособностиОбобщающая способность ( ОС) алгоритма прогнозирования можетбыть эффективно оценена по выборке данных с помощью методов:оценивание ОС на новой контрольной выборкеКросс-проверкаСкользящий контрольОднако большой интерес представляют теоретические методы оценкиобобщающей способности, которые позволили бы ответить навопросы: Будет ли обладать достаточной обобщающей способностьюалгоритм прогнозирования, найденный внутри некоторой моделиM̃ = {A : X̃ → Ỹ } ? Какие требования необходимо предъявить к M̃ ,чтобы обеспечить эффективное обучение?Ответы на данные вопросы даёт теория Вапника-ЧервоненкисаСенько Олег Валентинович ()МОТП, лекция 216 / 28Теоретические подходы к исследованию обобщающейспособностиДалее будет рассмативается задача распознавания.

Предположим, чтоf найден оптимальныйпо обучающей выборке Set внутри модели Mалгоритм Aopt с минимальной долей ошибок на Set - νerr (Aopt ). Достижение высокой обучающей способности соответствует низкойдоле ошибок на всей генеральной совокупности или, иными словами,низкой вероятности ошибок для алгоритма Aopt . .

ТеорияВапника-Червоненкиса устанавливает условия, которым должнаf для гарантированной сходимости частоты ошибкиудовлетворять Mоптимального обученного алгоритма к вероятности этой ошибки привозрастании объёма обучающей выборкиСенько Олег Валентинович ()МОТП, лекция 217 / 28Теория Вапника-ЧервоненкисаПусть k - число ошибочных классификаций, сделанных на обучающейвыборке Set длины m некоторым агоритмом A.

Характеристики

Тип файла
PDF-файл
Размер
476,75 Kb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов лекций

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее