Главная » Просмотр файлов » Ответы 190 страниц

Ответы 190 страниц (1184228), страница 25

Файл №1184228 Ответы 190 страниц (Ответы 190 страниц) 25 страницаОтветы 190 страниц (1184228) страница 252020-08-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 25)

- память команд (ПК),

- селекторная (арбитражная) сеть,

- множество исполнительных (функциональных) устройств (ФУ),

- распределительная сеть.

_______________

|--------------->| ФУ |-----------------|

| | ______________| |

| |

селекторная сеть распределительная сеть

| ______________ |

|<---------------| ПК |-----------------|

|______________|

Память команд состоит из "ячеек" активной памяти, каждая из которых может содержать одну команду вида <метка>: <операция>,<операнд1>,..,<операндК>,<адр_рез1>,..,<адр. _рез.М>, где адреса результатов являются адресами ячеек памяти. С каждой командой связан подсчитывающий элемент, непрерывно ожидающий прибытие аргументов, который пересылает команду на выполнение при наличии полного комплекта аргументов. Активных характер памяти заключается в том, что ячейка, обладающая полным набором операндов, переходит в возбужденное состояние и передает в селекторную сеть информационный пакет, содержащий необходимую числовую и связующую информацию о команде.

Селекторная сеть обеспечивает маршрут от каждой командной ячейки к выбранному, в соответствии с кодом операции, исполнительному (функциональному) устройству из множества устройств. Пакет поступает на одно из исполнительных устройств, где соответствующая операция выполняется и результат подается в распределительную сеть.

Распределительная сеть обрабатывает результирующий пакет, состоящий из результатов вычислений и адресов назначения. В зависимости от содержимого пакета, результат вычислений поступает в соответствующие ячейки памяти команд, создавая, тем самым, условия возможности их активизации.

Потоковая архитектура (data-flow), как одна из альтернатив фон-Нейманновской, обладает следующими характерными чертами:

- отсутствие памяти как пассивного устройства, хранящего потребляемую информацию,

- отсутствие счетчика команд (и, следовательно, последовательной обработки команд программы, разветвлений по условию и т.д.).

Потоковые вычислительные системы позволяют использовать параллелизм вычислительных алгоритмов различных уровней, потенциально достигать производительность, недоступную традиционным вычислительным системам. Основные проблемы, препятствующие развитию потоковых машин:

1. Не решена проблема создания активной памяти большого объема, допускающей одновременную активизацию большого количества операций.

2. Создание широкополосных распределительных и селекторных сетей потоковых машин и систем управления коммуникационной сетью является сложной задачей.

3. Обработка векторных регулярных структур через механизмы потока данных менее эффективна, чем традиционные решения.

4. Языки программирования для потоковых машин существуют, в основном, в виде графических языков машинного уровня. Языки типа SISAL, ориентируемые на описания потоковых алгоритмов, достаточно сложны для программистов.

Нейронные сети.

Искусcтвенная нейро́нная се́ть — это математическая модель, а также устройства параллельных вычислений, представляющие собой систему соединенных и взаимодействующих между собой простых процессоров (искусственных нейронов).

Такие процессоры обычно исключительно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах.

Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

Понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Полученные модели называются искусственными нейронными сетями (ИНС).

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами.

Разработчикам решения на основе нейронной сети требуется:

выбрать соответствующую модель сети;

определить топологию сети (число элементов и их связи);

указать параметры обучения.

Наиболее известным типом ИНС является персептрон. Доказано, что при нелинейной функции в нейроне могут быть подобраны коэффициенты связей так, что сеть может моделировать любую функцию. Для персептрона общепринятым является обучение методом обратного распространения ошибки. ИНС применяют при следующих классах задач: классификация данных, распознавание образов, предсказание временных рядов. Абсолютно точный ответ с помощью ИНС получить невозможно — например, бессмысленно решать таблицу умножения. Но есть задачи, нерешаемые другим путем. При решении таких задач самым важным является подбор данных и их подготовка.

Отличия от машин с архитектурой фон Неймана

Длительный период эволюции придал мозгу человека много качеств, которые отсутствуют в машинах с архитектурой фон Неймана:

массовый параллелизм, распределенное представление информации и вычисления,

способность к обучению и обобщению, адаптивность, свойство контекстуальной обработки информации, толерантность к ошибкам, низкое энергопотребление.

Пример

Входные данные — курс акций за год. Задача — определить завтрашний курс. Проводится следующее преобразование — выстраивается ряд курс за сегодня, вчера, за позавчера, за позапозавчера. Следующий ряд — смещается по дате на один день и так далее. На полученном наборе обучается сеть с 3 входами и одним выходом — то есть выход курс на дату, входы курс на дату минус 1 день, минус 2 дня, минус 3 дня. Обученной сети подаем на вход курс за сегодня, вчера, позавчера и получаем ответ на завтра. Нетрудно заметить, что в этом случае сеть просто выведет зависимость одного параметра от трех предыдущих. Если желательно учитывать ещё какой-то параметр (например, общий индекс по отрасли), то его надо добавить как вход (и включить в примеры), переобучить сеть и получить новые результаты. Для наиболее точного обучения стоит использовать метод ОРО, как наиболее предсказуемый и несложный в реализации.

В последние десятилетия активно развиваются приложения на базе искусственных нейронных сетей. Среди таких приложений можно отметить следующие задачи: классификация образов, кластеризация/категоризация, аппроксимация функций, предсказание/прогноз, оптимизация, память, адресуемая по содержимому, управление. Эти и подобные задачи успешно решаются средствами пакета Neural Networks, который входит в состав расширенных версий системы MATLAB.

Для решения задачи следует выбрать следующее: тип используемых нейронов (число входов, передаточные функции); архитектуру сети; входные и выходные параметры.

На втором этапе производится обучение созданной нейронной сети. После этого производится количественный анализ полученной модели искусственной нейронной сети. Нами использовалась модель нейронной сети, основанная на радиальном базисном нейроне. При ее «обучении» использовалась встроенная функция пакета Neural Networks системы MATLAB — newrb.

Результаты моделирования на наборах экспериментальных данных показали пригодность использования радиальных базисных нейронных сетей для аппроксимации функциональных зависимостей, в том числе и нелинейных. Можно отметить высокую скорость обучения и возможность применения результатов в реальных приложениях.

Добавление

Рассмотрим функцию Y=f(X), которая ставит в соответствие m-мерному вектору X некоторый p-мерный вектор Y (Рис. 1). Например, в задаче классификации вектор X- это классифицируемый объект, характеризуемый m признаками; вектор Y, состоящий из одной единицы и остальных нулей, является индикатором класса, к которому принадлежит вектор X (позиция единицы означает номер класса). Функция f ставит в соответствие каждому объекту тот класс, к которому он принадлежит.

Предположим, нам нужно найти функцию f. Воспользуемся методом обучения на примерах. Предположим, что имеется репрезентативная выборка векторов Xi, для которых известно значение функции Yi=f(Xi). Набор пар (Xi,Yi) будем называть обучающей выборкой. Рассмотрим теперь нейронную сеть, называемую многослойным перцептроном, определив, как устроены элементы сети («нейроны»), какова архитектура связей между элементами и по каким правилам будет происходить обучение сети.

Элемент сети функционирует в дискретном времени и на основании поступивших сигналов формирует результирующий сигнал. Элемент имеет несколько входов, каждому из которых предписан определенный «вес». Сигналы, поступающие по входам, суммируются с учетом соответствующих весов, и суммарный сигнал сравнивается с порогом срабатывания. Если суммарный сигнал меньше порога, то сигнал на выходе элемента близок или равен нулю, в противном случае сигнал близок к единице.

Каждый элемент входного слоя имеет один вход (с весом 1), по которому поступает соответствующая компонента вектора X. Каждый элемент скрытого слоя получает сигналы ото всех элементов входного слоя. Тем самым, элемент скрытого слоя имеет m входов, связывающих его с элементами входного слоя. Связи от элементов входного слоя к элементам скрытого слоя характеризуются матрицей «весов» связей w1, компоненты которой определяют величину эффективности связи. Каждый элемент выходного слоя получает сигналы ото всех элементов скрытого слоя. Таким образом, подавая на входной слой сети вектор X, мы получаем вектор активности элементов скрытого слоя и затем вектор Y на элементах выходного слоя. Результат работы сети зависит от числовых значений весов связей между элементами.

Обучение сети состоит в правильном выборе весов связей между элементами. Выбираются такие веса связей, чтобы суммарная среднеквадратичная ошибка для элементов обучающей выборки была минимальной. Достичь этого можно разными методами . После обучения перцептрона проводится процедура тестирования, позволяющая оценить результаты работы. Для этого обучающую выборку обычно делят на две части. Одна часть используется для обучения, а другая, для которой известен результат, задействована в процессе тестирования. Процент правильных результатов работы сети на этапе тестирования является показателем качества работы перцептрона.

Надо сказать, что для очень многих практических задач удается достичь на удивление высокого качества работы сети (порядка 95% и выше). Существует ряд математических теорем, обосновывающих возможность применения многослойных перцептронов для аппроксимации достаточно широкого класса функций f.

Области применения нейронных сетей.

Области применения нейронных сетей весьма разнообразны — это распознавание текста и речи, семантический поиск, экспертные системы и системы поддержки принятия решений, предсказание курсов акций, системы безопасности, анализ текстов. Рассмотрим несколько особенно ярких и интересных примеров использования нейронных сетей в разных областях. Необходимо отметить, что мы старались по возможности выбирать наиболее ранние случаи применения нейронных сетей при решении соответствующей задачи.

Техника и телекоммуникации

В 1996 году фирмой Accurate Automation Corp(http://www.accurate-automation.com), Chattanooga, TN по заказу NASA и Air Force был разработан экспериментальный автопилотируемый гиперзвуковой самолет-разведчик LoFLYTE (Low-Observable Flight Test Experiment — рис. 4). Самолет имел длину всего 2,5 м и вес 32 кг и был предназначен для исследования новых принципов пилотирования. LoFLYTE использовал нейронные сети, позволяющие автопилоту обучаться, копируя приемы пилотирования летчика. Поскольку самолет был предназначен для полетов со скоростью 4-5 махов, то быстрота реакции пилота-человека могла быть недостаточной для адекватного отклика на изменение режима полета. В этом случае на помощь приходили нейронные сети, которые перенимали опыт управления у летчика и за счет высокой скорости обработки информации позволяли быстро находить выход в аварийных и экстремальных ситуациях (см. также http://www.accurate-automation.com/Technology/Loflyte/loflyte.html и http://www.designation-systems.net/dusrm/app4/loflyte.html).

Одна из важнейших задач в области телекоммуникаций, которая заключается в нахождении оптимального пути пересылки трафика между узлами, может быть успешно решена с помощью нейронных сетей. В данном случае необходимо принимать во внимание то, что, во-первых, предложенное решение должно учитывать текущее состояние сети, качество связи и наличие сбойных участков, а во-вторых, поиск оптимального решения должен осуществляться в реальном времени. Нейронные сети хорошо подходят для решения задач такого рода. Кроме управления маршрутизацией потоков, нейронные сети могут использоваться и при проектировании новых телекоммуникационных сетей, позволяя получать весьма эффективные решения.

Информационные технологии

Определение тематики текстовых сообщений — еще один пример успешного использования искусственных нейронных сетей. Так, сервер новостей Convectis (продукт компании Aptex Software, Inc.) был выбран в 1997 году компанией PointCast, Inc., являвшейся лидером персонализированной доставки новостей в Интернете, для автоматической рубрикации сообщений по категориям. Определяя значения ключевых слов по контексту, сервер Convectis был способен в реальном времени распознавать тематику и автоматически рубрицировать огромные потоки текстовых сообщений, передаваемых по таким информационным сетям, как Reuters, NBC и CBS.

Нейросетевой продукт SelectCast от Aptex Software, Inc. позволял определять область интересов пользователей Интернета и предлагал им рекламу соответствующей тематики. Летом 1997 года компания Excite, Inc. лицензировала эту разработку для использования на своих поисковых серверах. После установки на серверах Excite и Infoseek нейросетевой рекламой было охвачено около трети всех пользователей сети на тот момент. Проведенные исследования установили, что отклик на такую тематическую рекламу была в среднем в два раза выше, чем на обычную, а для отдельных ее видов эффективность увеличивалась до пяти раз.

Распознавание речи является весьма популярным применением нейронных сетей, реализованным в ряде программных продуктов. В компании «НейроПроект» несколько лет назад была создана демонстрационная система для речевого управления встроенным в Windows калькулятором. Система позволяла без предварительного обучения уверенно распознавать каждое из 36 слов, сказанных в микрофон любым человеком. Для классификации использовалась иерархическая нейронная сеть, состоящая из двух каскадов: первый осуществлял примерное распознавание слова, относя его к одному из шести классов, а второй точно классифицировал слово внутри каждого из классов. В обучении этой нейронной сети принимали участие 19 дикторов.

Характеристики

Тип файла
Документ
Размер
1,72 Mb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее