Диссертация (1173025), страница 21
Текст из файла (страница 21)
Experimental study on the replacement of methane hydrate in sediments with CO2. Natural Gas Industry,2015, 35(8): 56-62.]37 付强,周守为, 李清平. 天然气水合物资源勘探与试采技术研究现状与发展战 略. 中 国 工 程 科 学, 2015,17(9): 123-132. DOI: 10.3969/j.issn.1009-38394041421742.2015.09.020.Fu Qiang, Zhou Shouwei, Li Qingping. Research status and development strategy of natural gas hydrate resource exploration and test mining technology.China Engineering Science, 2015, 17(9): 123-132. DOI: 10.3969/j.issn.1009 1742.2015.09.020.(Published in Chinese).Morohashi K, Abe Y, Watanabe M.
Replacement of CH4 in the hydrate by useof liquid CO2. Energy Conversion & Management, 2005, 46(11):1680-1691.Qiu K, Yamamoto K, Birchwood R, et al. Well-Integrity Evaluation for Methane-Hydrate Production in the Deepwater Nankai Trough, SPE Drilling &Completion, 2015, 30(1): 52-67.Bremner C, Harris G, Kosmala A, et al. Evolving technologies: Electrical submersible pumps, Oilfield Review (Schlumberger), Winter 2006: 30-43.Deng Z., Wang Z., Zhao Y., et al.
Flow Assurance during Gas Hydrate Production- Hydrate Regeneration Behavior and Blockage Risk Analysis in Wellbore,Abu Dhabi International Petroleum Exhibition & Conference, 13-16 November, Abu Dhabi, UAE, 2017.Moridis J.G., Collett T. S., Pooladi-Darvish M. et al. Challenges, Uncertainties,and issues facing gas production from gas-hydrate deposits, SPE ReservoirEvaluation & Engineering, 2011, 14(01): 76-112.43 李令东, 程远方, 梅伟, 等.温度影响天然气水合物地层井壁稳定的有限元模拟. 天然气工业, 2012, 32(8):74-78Li Lingdong, Cheng Yuanfang, Mei Wei, et al. Finite element simulation oftemperature affecting wellbore stability in natural gas hydrate formations.
Natural Gas Industry, 2012, 32(8): 74-78 (Published in Chinese).44 Clough G W, Duncan J M. Finite element analyses of retaining wall behavior.1504546474849ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(12):1657-1673.Bathe K J, Chaudhary A. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering,1985, 21(1): 65-88.Desai C S. Some aspects of constitutive models for geologic media. In ThirdInternational Conference on Numerical Methods in Geomechanics, Aachen,1979.Zeghal M, Edil T B.
Soil structure interaction analysis: modeling the interface.Canadian Geotechnical Journal, 2002, 39(3): 620-628.PotyondyJ G. Skin friction between various soils and construction materials.Geotechnique, 1961, 11(4):339-353.Tsubakihara Y, Kishida H. Frictional behaviour between normally consolidatedclay and steel by two direct shear type apparatuses. Soils and Foundations,1993, 33(2): 1-13.50 张嘎, 张建民.
粗粒土与结构接触面的静动本构规律. 岩土工程学报, 2005,27(5): 516-520.Zhang Wei, Zhang Jianmin. Static and dynamic constitutive laws of interfacebetween coarse-grained soil and structure. Chinese Journal of GeotechnicalEngineering, 2005, 27(5): 516-520. (Published in Chinese).51 侯文峻. 土与结构接触面三维静动力变形规律与本构模型研究. 清华大学,2008.Hou Wenjun. Three-dimensional static and dynamic deformation law and constitutive model of soil-structure contact surface. Tsinghua University, 2008.(Published in Chinese).52 Peterson M S, Kulhawy F H, Nucci L R, et al.
Stress-deformation behavior ofsoil-concrete interfaces. Contract Report B-49 to Niagara Mohawk Power Corporation, Syracuse, New York, 1976.53 Boulon M. Basic features of soil structure interface behavior. Computers andGeotechnics, 1989, 7(1-2): 115-131.54 Hryciw R D, Irsyam M. Behavior of sand particles around rigid ribbed inclusions during shear: Soils and Foundations, 1993, 33(3): 1-13.55 胡黎明. 土与结构物接触面力学特性研究和工程应用.
清华大学, 2000.Hu Liming. Research on mechanical properties of soil and structural contactsurfaces and engineering applications. Tsinghua University, 2000. (Publishedin Chinese).15156 Fakharian K, Evgin E. Automated apparatus for three-dimensional monotonicand cyclic testing of interfaces. Geotechnical Testing Journal, 1996, 19(1): 2231.57 Gomez J E, Filz G M, Ebeling R M. Development of an improved numericalmodel for concrete-to-soil interfaces in soil-structure interaction analyses. Virginia Polytechnic Inst And State Univ Blacksburg,2000.58 张嘎, 张建民.
粗粒土与结构接触面的可逆性与不可逆性剪胀规律. 岩土力学, 2005, 26(5): 699-704.59606162636465666768Zhang Wei, Zhang Jianmin. The reversibility and irreversible dilatancy of theinterface between coarse-grained soil and structure. Rock and Soil Mechanics,2005, 26(5): 699-704. (Published in Chinese).Freij-Ayoub, R., Tan, C., Clennell, B., Tohidi, B., and Yang, J., 2007. A wellbore stability model for hydrate bearing sediments. Journal of Petroleum Science and Engineering, 57 (1): 209-220,Tan C, Freij-Ayoub R, Clennell M, et al.
Managing Wellbore Instability Riskin Gas Hydrate-Bearing Sediments. In SPE. 2005.Long X, Tjok K M, Wright C S, et al. Assessing Well Integrity Using Numerical Simulation of Wellbore Stability During Production In Gas Hydrate Bearing Sediments. In Offshore Technology Conference.2014.Yan J, Zili Q, Mian C, et al. Study on Mechanisms of Borehole Instability inNaturally Fractured Reservoir During Production Test for Horizontal Wells.Liquid Fuels Technology, 2013, 31(8): 829-839.Yan J, Chen M, Liu G.
Wellbore Stability Analysis of Extended Reach Wells.Journal of Geomechanics,1999, 5(1): 4-11.Liu M, Jin Y, Lu Y, et al. A Wellbore Stability Model for a Deviated Well in aTransversely Isotropic Formation Considering Poroelastic Effects. Rock Mechanics & Rock Engineering, 2016, 49(9): 1-16.Cao W, Deng J, Yu B, et al. Offshore wellbore stability analysis based on fullycoupled poro-thermoelastic theory. Journal of Geophysics & Engineering,2017, 14(2): 380-396.Cao Y, Deng J. Wellbore Stability Research of Heterogeneous Formation.
Journal of Applied Sciences,2014, 14(1): 33-39.Handa Y.P.. Compositions enthalpies of dissociation, and heat capacities in therange 85 to 270 K for clathrate hydrates of CH4,C2H6,C3H8. J ChemThermo,1986,18(7):915-921.Loevios J.S., Perkins R., and Martin R.J.. Development of anautomated, high152pressure heat flux calorimeter and its application to measure the heat of dissociation and hydratemember of methane hydrate. Fluid Phase quilibrium,1990,59:73-79.69 Hasan A.R., Kabir C.S.
Heat transfer during two-phase flow in wellbores, Prat2: wellbore Fluid Temperature. SPE22948,1991:695-708.70 郭 春 秋 , 李 颖 川 。 气 井 压 力 温 度 预 测 综 合 数 值 模 拟 。 石 油 学 报 ,2001,22(3):100-104.Guo Chunqiu, Li Yingchuan. Comprehensive numerical simulation of gas wellpressure temperature prediction. Journal of Petroleum, 2001, 22(3): 100-104(Published in Chinese).71 KHOKHAR A.A.. Storage properties of natural gas hydrates. Trondheim: Norwegian University of Science and Technology 1998,99-107.72 高永海,孙宝江,王志远等,深水钻井井筒温度场的计算与分析。中国石油大学学报:自然科学版,2008,32(2):28-62.Gao Yonghai, Sun Baojiang, Wang Zhiyuan, etc. Calculation and analysis oftemperature field in deep water drilling wellbore. Journal of China Universityof Petroleum: Natural Science Edition, 2008, 32(2): 28-62. (Published in Chinese).73 高永海, 孙宝江, 赵欣欣,等.
水合物钻探井筒多相流动及井底压力变化规律. 石油学报, 2012, 33(5):881-886.7475767778Gao Yonghai, Sun Baojiang, Zhao Xinxin, et al. Multiphase flow and bottomhole pressure variation of hydrate drilling wellbore. ACTA PETROLEISINICA, 2012, 33(5): 881-886. (Published in Chinese).Chuvilin E.V. Residual nonclathrated water in sediments in equilibrium withgas hydrate, comparison with unfrozen water / E.V. Chuvilin, V.A. Istomin,S.S. Safonov // Cols Region Science and Technology. – 2011. – V. 68. – P.
68–73.Romero J, Touboul E. Temperature prediction for deepwater wells ; a fieldwalidated methodology [SPE] 49056 1998.Kabir C S. Hasan A R, Kouba G E,et al. Determining circulating fluid temperature in drilling, workover and well-control operations. SPE Drilling &Completion, 1996, 11(2);74-79.Kim H C, Bishnoi P R, Heidemann R A, et al.
Kinetics of methane hydratedecomposition. Chemical Science,1987,42 (7):1645-1653.Jamaluddin A K M. Kalogerakis N, Bishnoi P R. Modelling of decomposition153of a synthetic core of methane gas hydrate coupling intrinsic kinetics with hearttransfer rates.. The Canadian Journal of Chemical Engineering.1989.67(6);948-954.79 Handa Y P.
Compositions, enthalpies of dissociation and heart capacitics in therange 85 to 270K for clathrate hydrates of methane, ethane and propane andenthalpy of dissicition of isobutane hydrate, as determined by a heart flow calorimeter. The Journal of Chemical Thermodynamics,1986,18(10);915-921.80 Loevios J S, Perkins R, Martin R J, Development of an automated. High pressure heat flux calorimeter and its application to measure the heat of dissociation and hydrate member of methane hydrate. Fluid Phase Equilibrium,1990,59:73-79.81 Rueff R M, Sloan E D, Yesavage V F.