Главная » Просмотр файлов » Лекция 20. Правильные программы. Императивные программы. Задача верификации программ...

Лекция 20. Правильные программы. Императивные программы. Задача верификации программ... (1161890), страница 2

Файл №1161890 Лекция 20. Правильные программы. Императивные программы. Задача верификации программ... (Лекции 2014) 2 страницаЛекция 20. Правильные программы. Императивные программы. Задача верификации программ... (1161890) страница 22019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

. . }, {+, −, ×}, <, >, =, ≥, ≤i.Для этого достаточно установить истинность в интерпретацииI0 всех формул, стоящих в листьях построенного вывода.1. I0 |= ϕ(x, y , z) → ϕ(x, y , z)Очевидно.2. I0 |= ϕ0 (x, y , z)&¬¬(x = y ) → (z = x), т. е.I0 |= (x > 0)&(y > 0)&(x = y )&GCD(x, y , z) → (z = x).Верно.ЛОГИКА ХОАРАПример3. I0 |= ϕ0 (x, y , z)&¬(x = y )&(x > y ) →→ ϕ0 (x − y , y , z), т. е.I0 |= (x > 0)&(y > 0)&(x > y )&GCD(x, y , z) →→ (x − y > 0)&(y > 0)&GCD(x − y , y , z).Верно.4. I0 |= ϕ0 (x, y , z)&¬(x = y )&¬(x > y ) →→ ϕ0 (x, y − x, z), т. е.I0 |= (x > 0)&(y > 0)&(y > x)&GCD(x, y , z) →→ (x > 0)&(y − x > 0)&GCD(x, y − x, z).Верно.5.

I0 |= true.Очевидно.Таким образом, все листовые формулы вывода истинны винтерпретации I0 . Значит, вывод триплета ϕ0 {π0 } ψ0 являетсяуспешным выводом в интерпретации I0 .ЛОГИКА ХОАРАТеорема корректностиДля любой интерпретации I и для любого правила выводалогики ХоараΦ,ΨΦ,ϕесли I |= Ψ,I |= ϕ,Φ,Ψ1 , Ψ2I |= Ψ1 ,I |= Ψ2 ,Φ,ϕ, Ψ, ψ I |= ϕ,I |= Ψ,I |= ψ,то I |= Φ.Доказательство.Рассмотрим поочередно все правила вывода логики Хоара.ЛОГИКА ХОАРАДоказательство.ПравилоASS:ϕ{x/t} {x ⇐ t} ϕ.trueПокажем, что в любой интерпретации I верноI |= ϕ{x/t} {x ⇐ t} ϕ.(∗)Пусть θ — произвольная оценка переменных, и пустьI |= ϕ{x/t}θ.Тогда согласно операционной семантике императивныхпрограмм имеется единственное вычислениеhx ⇐ t, θi −→I h∅, ηi,и при этом η = {x/t}θ.Очевидно, I |= ϕη, и это доказывает (∗).ЛОГИКА ХОАРАДоказательство.Для остальных правил доказательство корректностипроводится по той же схеме, но более изощренно.Попробуйте завершить доказательство самостоятельно.Следствие.Если триплет ϕ{π}ψ имеет успешный в интерпретации I вывод,то программа π частично корректна в интерпретации Iотносительно предусловия ϕ и постусловия ψ.В частности, это означает, что исследованная нами программавычисления наибольшего общего частично корректна варифметической интерпретации I0 .АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММКак автоматизировать верификацию программ?Для этого нужно выяснить1.

Полна ли система правил вывода логики Хоара?2. Существует ли алгоритм построения успешного вывода?АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММВопрос о полноте правил вывода Хоара.На самом деле, здесь не один а три вопроса.1. Верно ли, что для каждой интерпретации I существуетсистема правил вывода, позволяющая для каждого триплетаΦ = ϕ{π}ψ построить успешный вывод Φ в интерпретации I идоказать его успешность в случае I |= Φ?Ответ отрицательный . Следует из теоремы Геделя о неполноте.АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММВопрос о полноте правил вывода Хоара.2.

Верно ли, что для каждой интерпретации I существуетсистема правил вывода, позволяющая для каждого триплетаΦ = ϕ{π}ψ построить успешный вывод Φ в интерпретации I(но не гарантирующая доказательства его успешности) вслучае I |= Φ?Ответ отрицательный . Базовые предикаты сигнатуры σ могутбыть недостаточно выразительными для представления всехтех отношений между переменными программы, которыенужны для построения успешного вывода.В результате не найдется нужных формул ϕ0 , ψ 0 дляприменения правилаϕ{π}ψCONS:.ϕ → ϕ0 , ϕ0 {π}ψ 0 , ψ 0 → ψАВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММВопрос о полноте правил вывода Хоара.3. Верно ли, что для некоторых интерпретаций I существуетсистема правил вывода Хоара, которая позволяет для каждоготриплета Φ = ϕ{π}ψ построить успешный вывод Φ винтерпретации I в случае I |= Φ?Ответ положительный . Достаточно, чтобы для любого циклаπ = while C do π 0 od существовал такой терм tπ , что длялюбой оценки переменных θ значение терма tπ θ равно n + 1тогда и только тогда, когда цикл π в вычислении hπ, θiсовершает n итераций.АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММЧто нужно для построения успешного вывода?IНеобходимо иметь эффективный прувер для проверкиистинности формул в разных интерпретациях:I |= ϕ ..CONS:ϕ{π}ψ,ϕ → ϕ0 , ϕ0 {π}ψ 0 , ψ 0 → ψпоскольку неясно, какие формулы ϕ0 , ψ 0 нужно выбирать вкаждом случае.АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММСтратегия вывода в логике Хоара.ОпределениеПусть заданы интерпретация I , императивная программа π ипостусловие ψ.

Тогда формула ϕ0 называется слабейшимпредусловием (weakest postcondition) для программы π ипостусловия ψ, еслиI I |= ϕ0 {π}ψ,1.2. для любой формулы ϕ, если I |= ϕ{π}ψ, то I |= ϕ → ϕ0 .Слабейшее предусловие для программы π и постусловия ψусловимся обозначать wpr (π, ψ).АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММКакая польза от слабейшего предусловия?ТеоремаI |= ϕ{π}ψ ⇐⇒I |= wpr (π, ψ){π}ψ,I |= ϕ → wpr (π, ψ).Таким образом, задача построения успешного вывода сводитсяк задаче вычисления wpr (π, ψ).АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММА как вычислять слабейшее предусловие?Теоремаwpr (x ⇐ t, ψ) = ψ{x/t},wpr (π1 ; π2 , ψ) = wpr (π1 , wpr (π2 , ψ)),wpr (if C then π1 else π2 fi, ψ) =C &wpr (π1 , ψ) ∨ ¬C &wpr (π2 , ψ),ДоказательствоСамостоятельно.Таким образом, для многих операторов (программ) слабейшеепредусловие вычисляется автоматически.АВТОМАТИЧЕСКАЯ ПРОВЕРКАПРАВИЛЬНОСТИ ПРОГРАММНеужели все так просто?Увы, нет.

Главную трудность представляет оператор циклаwhile C do π od. Единственный способ верифицировать этотоператор — это воспользоваться производным правилом:WHILE-GEN:ϕ {while C do π od} (ψ).ϕ → χ, (χ&C ) {π} χ, (χ&¬C ) → ψЭто правило требует введения вспомогательной формулы χ,которая называется инвариантом цикла .

Инвариант циклазависит от программы π и условия C .Автоматическая генерация инвариантов цикла — это ключеваязадача в решении проблемы автоматической верификациипрограмм.КОНЕЦ ЛЕКЦИИ 20..

Характеристики

Тип файла
PDF-файл
Размер
479,11 Kb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Лекции 2014
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее