Главная » Просмотр файлов » Лекции 2-11. Математическая логика (до колка)

Лекции 2-11. Математическая логика (до колка) (1161869), страница 16

Файл №1161869 Лекции 2-11. Математическая логика (до колка) (Лекции 2014) 16 страницаЛекции 2-11. Математическая логика (до колка) (1161869) страница 162019-09-19СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 16)

. . , xm ).Задача: вычислить значения переменных x1 , . . . , xm , прикоторых запрос Q логически следует из базы знаний Γ.РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯРешить эту задачу можно попытаться так:задачу проверки логического следствия{ϕ1 , ϕ2 , .

. . , ϕn } |= ∃x1 . . . ∃xm ϕ0 (x1 , . . . , xm ).свести к проверке противоречивости системы формулS = {ϕ1 , ϕ2 , . . . , ϕn , ¬ϕ0 (x1 , . . . , xm )}(здесь x1 , . . . , xm по умолчанию связаны квантором ∀),построить резолютивное опровержение S, иприменить последовательность унификаторовθ1 , θ2 , . . . , θN , вычисленных по ходу построениярезолютивного вывода, к целевым переменным x1 , . . . , xm :x1 θ 1 θ 2 . . . θ N ,...,xm θ 1 θ 2 . .

. θ N .РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯЭтот трюк сработал при решении задачи о «любовномквадрате Саша–Даша–Паша–пиво».Попробуем применить его еще раз для решения какой-нибудьдругой вычислительной задачи.Поиск пути в графе.Пусть задан ориентированный граф Γ , в котором выделеныдве вершины u и v . Требуется найти маршрут из вершины u ввершину v .РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.граф Γv3y @@v1yv4v2y6-y@@@@@Ryv5@@R yv@6v7yРЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Вначале нужно суметь сформулировать эту задачу на языкелогики предикатов.Граф Γ может быть задан перечнем его вершин и дуг.

ВведемIконстанты v1 , v2 , . . . , vn , . . . для обозначения вершинграфов;Iпредикатный символ Vert (1) для обозначения свойства:«x — вершина графа» ;Iпредикатный символ Arc (2) для обозначения свойства:«hx, y i — дуга графа».Чтобы отличать переменные от констант, в дальнейшемусловимся обозначать переменные ЗАГЛАВНЫМИБУКВАМИ, а константы — прописными буквами.РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Тогда граф может быть описан следующим набором формуллогики предикатов.KBΓ =nϕ1 = Vert(v1 ), ψ1 = Arc(v1 , v2 ),ϕ2ϕ3ϕ4ϕ5ϕ6= Vert(v2 ),= Vert(v3 ),= Vert(v4 ),= Vert(v5 ),= Vert(v6 ),ψ2ψ3ψ4ψ5ψ6= Arc(v2 , v3 ),= Arc(v2 , v5 ),= Arc(v3 , v6 ),= Arc(v5 , v4 ),= Arc(v4 , v6 ), oϕ7 = Vert(v7 ), ψ7 = Arc(v6 , v5 ),РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Ориентированный путь в графе — это последовательность(список) дуг.

Значит нужно иметь подходящую структуруданных для представления список на языке логики предикатов.Для этого мы введемIспециальную константу nil для обозначения пустогосписка, не содержащего ни одного элемента;Iспециальный функциональный символ (2) дляобозначения двухместной операции присоединенияэлемента x к списку y в качестве заголовка (конструкторсписков )..РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе..При помощи введенных символов nil и определимспециальное множество термов — списки :Iконстанта nil — это список;Iесли t — произвольный терм, а T — список,то терм (t, T ) — это список;Iдругих списков нет..Терм t называтся заголовком , а T — хвостом списка.(t, T ).Чтобы сделать обозначения более естественными, мы будемзаписывать знак двухместной операции между аргументами(инфиксная запись), как это делается для операций +, ×..Таким образом, запись.(t , t ) равносильна записи t .t .1212РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Примеры списковПустой список:nilCписок из одного элемента X :.X nil.

.Последовательность букв а,б,в,г: а.(б.(в.(г.nil)))Упорядоченная пара hX , Y i:Таблица (матрица)1 23 4X (Y nil):. . .(3.(4.nil)).nil)(1 (2 nil))РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Поскольку в большинстве случаев списки используются дляпредставления конечных последовательностей, упростимзапись линейных списков:условимся опускать скобки, считая по умолчанию, что всескобки ассоциируются вправо, т. е. запись....а (б (в (г nil)))будет считаться равносильной записи....а б в г nilРЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Еще несколько примеров списковТерм nil nil обозначает список, состоящий из одного элемента— пустого списка;.Терм а.б.в.г вообще не является списком (почему? );Терм (1.nil).2.nil.nil обозначает список, состоящий из трехэлементов:первый элемент — это список, состоящий из одного элемента 1,второй элемент — это константа 2,третий элемент — пустой список..Следует помнить, что термы X nil и X — существенноразличные (имеют разные типы):X nil — это список (массив) из одного элемента X ,X — это просто элемент (переменная или константа)..РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Таким образом, маршрут в ориентированном графе — этосписок дуг, в котором каждая дуга — это список, состоящий издвух вершин...

. .. .Пример: (v1 v2 nil) (v2 v3 nil) nil — это маршрут,состоящий из двух дуг hv1 , v2 i и hv2 , v3 i.А теперь запишем на языке логики предикатов определениемаршрута в ориентированном графе. Для этого введемтрехместный предикатный символ R (3) :R(X , Y , t) будет обозначать утверждение о том, что терм tзадает маршрут из вершины X в вершину Y .РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Определение маршрута в графе состоит из двух частей:χ1 = ∀X R(X , X , nil)«из X в X ведет пустой маршрут»;.. .χ2 = ∀X ∀Y ∀Z ∀U (Arc(X , Y )&R(Y , Z , U) → R(X , Z , (X Y nil) U))«если из X в Y ведет дуга, а из Y в Z ведет маршрут U,то из X в Z ведет маршрут t 0 = hX , Y i, U».РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Итак, мы имеемБазу знаний KB, состоящую из формулϕi , 1 ≤ i ≤ 7,ψi , 1 ≤ i ≤ 7,χ1 , χ2 ,при помощи которых определяется устройство графа Γ изнания о том, что такое маршрут в графе.Запрос к базе знаний Q(X ) = R(v1 , v6 , X ) с одной целевойпеременной X .Наша задача: найти такое значение t целевой переменной X ,при котором имеет место логическое следствиеKB |= Q(t).РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Будем решать задачу поиска пути методом резолюций.KB |= ∃XQ(X )Cведем вопрос о логическом следствии к вопросу опротиворечивости формулы ^77^ϕi &¬ψj & χ1 & χ2 → ∃X Q(X )i=1j=1Далее приводим полученную формулу к ПНФ, к ССФ, иизвлекаем систему дизъюнктов S.РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Построим резолютивное опровержение полученной системыдизъюнктов S:nS=ϕ1 = Vert(v1 ),ψ1 = Arc(v1 , v2 ),ϕ2 = Vert(v2 ),ϕ3 = Vert(v3 ),ϕ4 = Vert(v4 ),ϕ5 = Vert(v5 ),ϕ6 = Vert(v6 ),ϕ7 = Vert(v7 ),χ1 = R(X , X , nil),χ2 = ¬Arc(X , Y ) ∨o¬R(Y , Z , U)Φ0 = ¬R(v1 , v6 , X )ψ2ψ3ψ4ψ5ψ6ψ7= Arc(v2 , v3 ),= Arc(v2 , v5 ),= Arc(v3 , v6 ),= Arc(v5 , v4 ),= Arc(v4 , v6 ),= Arc(v6 , v5 ),..

.∨ R(X , Z , (X Y nil) U),РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе... .χ2 = ¬Arc(X1 ,Y1 )∨¬R(Y1 ,Z,U )∨R(X1 ,Z1 ,(X1 Y1 nil) U1 )1 1Φ0 = ¬R(v1 ,v6 ,X )θ1 = {X /(v1 Y1 nil) U1 , X1 /v1 , Z1 /v6 }.. .D10 = ¬Arc(v1 ,Y1 )∨¬R(Y1 ,v6 ,U1 )ψ1 = Arc(v1 , v2 )θ2 = {Y1 /v2 }.. .¬Arc(X2 ,Y2 )∨¬R(Y2 ,Z2 ,U2 )∨R(X2 ,Z2 ,(X2 Y2 nil) U2 )D20 = ¬R(v2 ,v6 ,U1 ).. .θ3 = {U1 /(v2 Y2 nil) U2 , X2 /v2 , Z2 /v6 }D30 = ¬Arc(v2 ,Y2 )∨¬R(Y2 ,v6 ,U2 )D30 = ¬Arc(v2 ,Y2 )∨¬R(Y2 ,v6 ,U2 )ψ2 = Arc(v2 , v3 )θ4 = {Y2 /v3 } ¬Arc(X3 ,Y3 )∨¬R(Y3 ,Z3 ,U3 )∨R(X3 ,Z3 ,(X3 Y3 nil) U3 )D40 = ¬R(v3 ,v6 ,U2 )θ5 = {U2 /(v3 Y3 nil) U3 , X3 /v3 , Z3 /v6 }..

... .D50 = ¬Arc(v3 ,Y3 )∨¬R(Y3 ,v6 ,U3 )ψ4 = Arc(v3 , v6 )θ6 = {Y3 /v6 }D60 = ¬R(v6 , v6 , U3 )χ = R(X , X , nil)144θ7 = {X4 /v6 , U3 /nil}D70 = Вывод успешно завершен.РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.Итак, система дизъюнктов S противоречива, т.е. маршрут извершины v1 в вершину v6 существует. Но каков этот маршрут?Рассмотрим последовательность вычисленных унификаторовθ1θ2θ3θ4θ5θ6θ7=======..

... ... .{X /(v1 Y1 nil) U1 , X1 /v1 , Z1 /v6 }{Y1 /v2 }{U1 /(v2 Y2 nil) U2 , X2 /v2 , Z2 /v6 }{Y2 /v3 }{U2 /(v3 Y3 nil) U3 , X3 /v3 , Z3 /v6 }{Y3 /v6 }{X4 /v6 , U3 /nil}и применим их к целевой переменной X :. . . .. . .. .X θ1 θ2 θ3 θ4 θ5 θ6 θ7 = (v1 v2 nil) (v2 v3 nil) (v3 v6 nil) nilРЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯПоиск пути в графе.граф Γv1yv3v2-y@@y @@@v4y6@R yv@6v7y@@@Ryv5. . . .. . .. .X θ1 θ2 θ3 θ4 θ5 θ6 θ7 = (v1 v2 nil) (v2 v3 nil) (v3 v6 nil) nilРЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯНам опять повезло, и метод резолюций вычислил правильныйответ.Неужели так хорошо и красиво бывает всегда?Рассмотрим еще одну задачу.Где мы проведем вечер?Если вечером будет идти дождь, то мы пойдем в кино, а еслидождя не будет, то мы пойдем в парк.

Где же мы проведемвечер?РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯГде мы проведем вечер?Введем необходимые константы и предикаты:Iкино и парк — константы;IR (0) — 0-местный предикатный символ, обозначающийутверждение «вечером пойдет дождь»;IE (1) — 1-местный предикатный символ; E (X ) обозначаетутверждение «этим вечером наше развлечение — X ».База знаний:ϕ1 = R → E (кино),ϕ2 = ¬R → E (парк),Запрос: Q(X ) = E (X ).РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯГде мы проведем вечер?1. {ϕ1 , ϕ2 } |= ∃X E (X )?2. |= ϕ1 &ϕ2 → ∃X E (X )?3. Противоречива ли ¬ ϕ1 &ϕ2 → ∃X E (X ) ?3. Противоречива ли системаS = { D1 = ¬R ∨ E (кино),D2 = R ∨ E (парк),D0 = ¬E (X )}РЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯГде мы проведем вечер?D0 = ¬E (X )@@D1 = ¬R ∨ E (кино)D2 = R ∨ E (парк)@@@θ1 = {X /кино}@@@R @θ2 = {X /парк}@@R @D3 = ¬RD4 = RQQQQθ3 = εQQQQs+Резолютивное опровержение построеноРЕЗОЛЮТИВНЫЙ ВЫВОД КАК СРЕДСТВОВЫЧИСЛЕНИЯГде мы проведем вечер?Построив резолютивное опровержение, мы можем бытьуверены, что{ϕ1 , ϕ2 } |= ∃X E (X ),т.е.

Характеристики

Тип файла
PDF-файл
Размер
4,64 Mb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Лекции 2014
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6294
Авторов
на СтудИзбе
314
Средний доход
с одного платного файла
Обучение Подробнее