Диссертация (1151316), страница 50
Текст из файла (страница 50)
Blechingberg, I.E. Holm, K.B. Nielsenet. al. // Glia. – 2007. – V. 5(55). – Р. 497–507.327. Browning, E.T. Glial fibrillary acidic protein: norepinephrine stimulatedphosphorylation in intact C-6 glioma cells / E.T. Browning, M. Ruina //Journal of neurocytology. – 1984. – V.
3(42). – P. 178–726.328. Lima, F. Thyroid hormone induces protein secretion and morphological changesin astroglial cells with an increase in expression of glial fibrillary acidic protein /F. Lima, A. Trentin, D. Rosenthal et. al. // The journal of endocrinology. – 1997.
–V. 1(154). – P. 167–175.329. Wein, M.D. Developmental changes in the amount of glial fibrillary acidic proteinin three regions of the brain / M.D. Wein, A.J. Patel, A. Hunt, G.T. Thomas //Development of brain reseach. – 1984. – V. 2(15). – P. 201–209.311330. Laundry, C.F. Developmental expression of glial fibrillary acidic protein in the ratbrain analyzed by in situ hybridization / C.F. Laundry, G.O. Ivo, I.R.
Broun //Journal of neuroscience reseach. – 1990. – V. 25. – P. 149–203.331. Abd-el-Basset, E.M. Immuno-electron microscopical localization of vimentin andglial fibrillary acidic protein in mouse astrocytes and their precursor cells in culture /E.M. Abd-el-Basset, I. Ahmed, V.I. Kalnins, S. Fedoroff // Glia. – 1992. – V. 6. –P.
149–153.332. Clarke, S.R. Reactive astrocytes express the embryonic intermediateneurofilament nestin / S.R. Clarke, A.K. Shetty, J.L. Bradley, D.A. Turner //Neuroreport. – 1994. – V. 5(15). – P. 1885–1888.333. Catalani, A. Glial fibrillary acidic protein immunoreactive astrocytes indeveloping rat hippocampus / A. Catalani, M. Sabbatini, C. Consoli et.
al. //Mechanisms of ageing development. – 2002. – V. 5(123). – P. 481–90.334. Hwang, I.K. Changes in glial fibrillary acidic protein immunoreactivity in thedentate gyrus and hippocampus proper of adult and aged dogs / I.K. Hwang ,J.H. Choi, H. Li et. al.
// The journal veterinary medical science. – 2008. –V. 9(70). – P. 965–969.335. Amenta, F. Astrocyte changes in aging cerebral cortex and hippocampus: aquantitative immunohistochemicalstudy /F. Amenta, E. Bronzetti,M. Sabbatini et. al. // Microscopy research and technigue. – 1998. – V. 1(43). –P. 29–33.336. Hayakawa, N. Age-related changes of astorocytes, oligodendrocytes andmicroglia in the mouse hippocampal CA1 sector / N. Hayakawa, H. Kato,T.
Araki // Mechanisms of ageing development. – 2007. – V. 4(128). –P. 311–316.337. Kaur, M. Age-related impairments in neuronal plasticity markers andastrocytic GFAP and their reversal by late-onset short term dietary restriction /M. Kaur, S. Sharma, G. Kaur // Biogerontology. – 2008. – V. 6(9). –P.
441–454.312338. David, J.P. Glial reaction in the hippocampal formation is highly correlatedwith aging in human brain / J.P. David, F. Ghozali, C. Fallet-Bianco et. al. //Neuroscience letters. – 1997. – V. 1–2(235). – P. 53–56.339. Jalenques, I. Age-related changes in GFAP-immunoreactive astrocytes in therat ventral cochlear nucleus / I. Jalenques, A. Burette, E. Albuisson, R. Romand// Hearing research. – 1997. – V. 1–2(107). – P.
113–124.340. Xie, F. Age-related decline of myelin proteins is highly correlated withactivation of astrocytes and microglia in the rat CNS / F. Xie, J.C. Zhang,H. Fu, J. Chen // International journal of molecular medicine. – 2013. –V. 5(32). – P. 1021–1028.341. Anderson, C.P. Aging and increased hypothalamic glial fibrillary acid protein(GFAP) mRNA in F344 female rats. Dissociation of GFAP inducibility fromthe luteinizing hormone surge / C.P. Anderson, I. Rozovsky, D.J.
Stone et. al. //Neuroendocrinology. – 2002. – V. 2(76). – P.121–30.342. Jyothi, H.J. Aging causes morphological alterations in astrocytes andmicroglia in human substantia nigra pars compacta / H.J. Jyothi,D.J. Vidyadhara, A. Mahadevan et. al. // Neurobiology of aging. – 2015. –V. 12(36).
– P. 3321–3333.343. Kalman, M. Characteristics of glial reaction in the perinatal rat cortex: effectof lesion size in the 'critical period' / M. Kalman, B.M. Ajtai, J.H. Sommernes //Neural plasticity. – 2000. – V. 3(7). – P. 147–165.344. Quintanar, J.L. Detection of glial fibrillary acidic protein and neurofilamentsin the cerebrospinal fluid of patients with neurocysticercosis / J.L. Quintanar,L.M. Franco, E. Salinas // Parasitology research.
– 2003. – V. 4(90). –P. 261–263.345. Sharma, S. The aging human cochlear nucleus: Changes in the glial fibrillaryacidicprotein,intracellularcalciumregulatoryproteins,GABAneurotransmitter and cholinergic receptor / S. Sharma, T.C. Nag, A. Thakar et.al. // Journal of chemical neuroanatology.
– 2014. – V. 56. – P. 1–12.313346. Wu, Y. Yew DT. Age related changes of various markers of astrocytes insenescence-accelerated mice hippocampus / Y. Wu, A.Q. Zhang, D.T. Yew //Neurochemistry international. – 2005. – V. 7(46). – P. 565–574.347. Sloane, J.A. Astrocytic hypertrophy and altered GFAP degradation with agein subcortical white matter of the rhesus monkey / J.A. Sloane, W. Hollander,D.L.
Rosene et. al. // Brain research. – 2000. – V. 1–2(862). – P. 1–10.348. Day, J.R. The effect of age and testosterone on the expression of glialfibrillary acidic protein in the rat cerebellum / J.R. Day, A.T. Frank,J.P. O'Callaghan et al. // Experimental neurology. – 1998. – V. 2(151). –P. 343–346.349. Latour, A. Omega-3 fatty acids deficiency aggravates glutamatergic synapseand astroglial aging in the rat hippocampal CA1 / A. Latour, B.
Grintal,G. Potokar // Aging cell. – 2013. – V. 1(12). – P. 76–84.350. Finch, C.E. Neurons, glia, and plasticity in normal brain aging / C.E. Finch //Neurobiology of aging. – 2003. – V. 1(24). – P. 123–127.351. Недзвецкий, В.С. Характеристика специфических белков промежуточныхфиламентов в опухолях головного мозга человека / В.С. Недзвецкий,В.А. Березин, Т.И. Оберняк, Е.А. Жмарева // Биохимия. – 1986.– № 11(51). –С. 1843–1850.352.
Lim, M.C. Glial fibrillary acidic protein splice variants in hepatic stellatecells-expression and regulation / M.C. Lim, G. Maubach, L. Zhuo // Moleculesand cells. – 2008. – V. 3(25). – Р. 376–384.353. Perez, J.L. Soluble oligomeric forms of beta-amyloid (Abeta) peptidestimulate Abeta production via astrogliosis in the rat brain / J.L. Perez,I. Carrero, P. Gonzalo et.
al. // Experimental neurology. – 2010. – V. 223. –P. 410–421.354. Kaneko, K. Glial fibrillary acidic protein is greatly modified by oxidative stress inaceruloplasminemia brain / K. Kaneko, A. Nakamura, K. Yoshida et. al. // Freeradical research. – 2002. – V. 3(36). – Р. 303–306.314355. Eng, L.F. GFAP and astrogliosis / L.F.
Eng, R.S. Ghirnikar // Brain pathology. –1994.– V. 3(4). – P. 229–237.356. Gottfried, C. Regulation of protein phosphorylation in astrocyte cultures byexternal calcium ions: specific effects on the phosphorylation of glial fibrillaryacidic protein (GFAP), vimentin and heat shock protein 27 (HSP27) /C. Gottfried, L.
Valentim, C. Salbego et. al. //Brain research. – 1999. –V. 2(833). – P. 142–149.357. Nichols, N.R. GFAP mRNA increases with age in rat and human brain /N.R. Nichols, J.R. Day, N.J. Laping et. al. // Neurobiology of aging. – 1993. –V. 5(14). – Р. 421–429.358. Wofchuk, S. Age-dependent changes in the regulation by external calcium ions ofthe phosphorylation of glial fibrillary acidic protein in slices of rat hippocampus /S. Wofchuk, R. Rodnight // Brain research. – 1995. – V.
2(85). – P. 181–186.359. Cruz-Sanchez,F.F.Evaluationofneuronalloss,astrocytosisandabnormalities of cytoskeletal components of large motor neurons in the humananterior horn in aging / F.F. Cruz-Sanchez, A. Moral, E. Tolosa et. al.
// Journalof neural transmission. – 1998. – V. 6–7(105). – Р. 689–701.360. Surojit, P. Thyroid Hormone-Induced Maturation of Astrocytes. Is Associatedwith the Expression of New Variants of Vimentin and Their Phosphorylation /P. Surojit, G. Kusumika, D. Sumantra, K. Pranab // Journal of neurochemistry.– 1999. – V. 5(73). – Р. 1964–1972.361. Bignami, A.
The astroglial response to stabbing. Immunofluorescence studieswith antibodies to astrocyte- specific protein (GFA) in mammalian andsubmammalian vertebrates / A. Bignami, D. Dahl // Neuropathology andapplied neurobiology. – 1976. – V. 2. – Р. 99–110.362. Morita, T. Severe involvement of cerebral neopallidum in a dog with hepaticencephalopathy / T. Morita, Y.
Mizutani, Y. Michimae et. al. // Veterinarypathology. – 2004. – V. 4(41). – Р. 442–445.363. Nicholas, A.P. Increased citrullinated glial fibrillary acidic protein in secondaryprogressive multiple sclerosis / A.P. Nicholas, T. Sambandam, J.D. Echols,315W.W. Tourtellotte // The journal of comparative neurology. – 2004. – V. 1(473). –Р. 128–136.364.
Tomassoni, D. Increased expression of glial fibrillary acidic protein in the brain ofspontaneously hypertensive rats / D. Tomassoni, R. Avola, M.A. Di Tullio et. al. //Clinical and experimental hypertension. – 2004. – V. 4(26). – Р. 335–350.365. Frontczak-Baniewicz, M. Ultrastructural and immunochemical studies of glialscar formation in diabetic rats / M. Frontczak-Baniewicz, L.
Struzynska,J. Andrychowski et. al. // Acta neurochirurgica. Supplement. – 2010. – V. 106. –Р. 251–255.366. Koyama, Y. Signaling molecules regulating phenotypic conversions ofastrocytes and glial scar formation in damaged nerve tissues / Y. Koyama //Neurochemistry international. – 2014. – V. 78. – P. 35–42.367. Lazarini, F. Regulation of the glial fibrillary acidic protein, beta actin and prionprotein mRNAs during brain development in mouse / F. Lazarini, J.P. Deslys,D.
Dormont // Brain research. Molecular brain research. – 1991. – V. 4(10). –Р. 343–346.368. Kordek, R. Molecular analysis of prion protein (PrP) and glial fibrillary acidicprotein (GFAP) transcripts in experimental Creutzfeldt-Jakob disease in mice /R. Kordek, P.P. Liberski, R. Yanagihara et. al. // Acta neurobiologiaeexperimentalis. – 1997. – V. 2(57). – Р. 85–90.369. Ye, X. Astrocytosis and amyloid deposition in scrapie-infected hamsters / X.