Диссертация (1149828), страница 13
Текст из файла (страница 13)
Анализ специфики ориентации молекулы4-пентил-4’-цианобифенила в различных ассоциатах проведен в вакууме и вконтинуальной среде. В результате показано, что под влиянием окруженияструктуры димеров, найденные в вакууме, разрушаются и стремятся кобразованию структуры нематической фазы, т.е. направлены параллельноосямдиректора.Посколькутримерможнорассматриватькакмногочастичную систему, характеризующую свойства вещества, полученныедля него результаты с учетом эффекта окружения, более нагляднопредставляют структуру доменов в жидкокристаллической фазе.
Поведениедимеровитримеровподвоздействиемвнешнегооднородногоэлектрического поля принципиально отличается от их ориентации в вакууме.9394Для всех исследованных ассоциатов наблюдается тенденция к выстраиваниюпротяженныхдипольныхмолекулпараллельнодругдругу,однакодипольные моменты направлены как в одну, так и в другую сторону.Результаты, полученные на наноразмерном уровне, подтверждают известнуюзакономерность: свойства жидкокристаллической фазы в направлении осидиректора и в обратном направлении совпадают.Исследование ассоциатов 4-пентил-4’-цианобифенила, проведенное вдиссертационнойработе,позволяетобъяснитьсамоорганизациювжидкокристаллической фазе.
Данный подход является универсальным иможет быть применим для веществ, состоящих из молекул с аналогичнойструктурой, то есть имеющих протяженную пространственную структуру,значительный по величине дипольный момент и сильно поляризованнуюгруппу.По результатам проведенных исследований могут быть полученырекомендации для конструирования приборов с заданными электронными иоптическими характеристиками.Основныерезультатыпроведенноговдиссертационнойработеисследования:1. Рассчитанымономера,структурныедимеровииэнергетическиетримеровхарактеристикимолекулы4-пентил-4’-цианобифенила (СВ5) в вакууме.
Проанализировано изменениегеометрическойэлектроннойструктурыплотности,молекул,определеныперераспределениечастотынормальныхколебаний для всех ассоциатов.2. Проведенасравнительнаякомпьютерногоразличнымимоделированиягибриднымиэлектронной плотности.характеристикамолекулярныхпотенциаламиметодарезультатовкомплексовфункционала953. Проведено исследование влияния анизотропной среды на структуруи спектры ассоциатов СВ5 в растворителе с использованием моделиполяризуемого континиума (РСМ).4.
Предложена математическая модель учетавлияния внешнегоэлектромагнитного поля континуальной среды на ассоциатыпентил-4’-цианобифениладляобъяснения4-формированияжидкокристаллической фазы.5. Создан комплекс программ для квантовохимического пакетаGaussian 09 с параллельным режимом вычислений, реализующийразработанную в диссертационной работе модель.6. Врамкахпредложенноймоделиисследованоизменениеконфигураций ассоциатов СВ5 в жидкокристаллической фазе.96Список литературы1.Блинов Л.М.
Жидкие кристаллы: Структура и свойства. М.: Книжныйдом «ЛИБРОКОМ», 2013. — 480 с.2.Томилин М.Г., Невская Г.Е. Дисплеи на жидких кристаллах. Учебноепособие. СПб: СПбГУ ИТМО, 2010. — 108 с.3.Ларионов А.Н., Чернышев В.В., Волков В.В., Маковий К.А., ЛарионоваН.Н., Ус Н.А. Вязкость нематических жидких кристаллов // ВестникВГУ, Сер. физика, математика. — 2001.
— Вып. 1. — С. 48–52.4.Коншина Е.А. Развитие физико-химической концепции нанотехнологииориентации жидких кристаллов // Научно-технический вестник СПбГУИТМО. Высокие технологии в оптических и информационных системах.— 2005. — Вып. 23. — С. 175.5.БабковЛ.М.,ГнатюкИ.И.,ПучковскаяГ.А.,ТрухачевС.В.Исследование температурных изменений ИК спектров 4-бутил-4’цианобифенила // Известия Саратовского университета. — 2008. — Т.8.— Вып. 1. — С.
42–47.6.Степанов Н. Ф. Квантовая механика и квантовая химия. — М.: Мир,2001. — 519 с.7.Грибов В. Д., Муштакова С. П. Квантовая химия: Учебник для студентовхимическихибиологическихспециальностейвысшихучебныхзаведений. — М.: Гардарики, 1999. — 387 с.8.БедринаМ.Е.,ЕгоровН.Е.,КлемешевВ.А.Моделированиенаноструктур на высокопроизводительном вычислительном комплексе//Вестн.С.-Петерб.ун-та.Сер.10:Прикладнаяматематика.Информатика. Процессы управления. — 2010. — Вып. 4. — С. 55–57.9.Михлин С.Г.
Вариационные методы в математической физике. Изд. 2-е,переработанное и дополненное. – М.: Наука, 1970. — 512 с.10. Новосадов Б.К. Методы решения уравнений квантовой химии. — М.:Наука, 1988. — 184 с.9711. Хедвинг П. Прикладная квантовая химия. — М.: Мир, 1997. — 596 с.12. Абаренков И.В., Братцев В.Ф., Тулуб А.В. Начала квантовой химии. —М.: Высшая школа, 1989. — 303 с.13. Кругляк Ю. А., Дядюша Г. Г., Куприевич В. А. Методы расчетаэлектронной структуры и спектров молекул. — М.: Киев, 1969.
— 307 с.14. Горгадзе Г. Квантовая механика простейших молекул. — М.: Тбилиси,1960. — 92 с.15. Сизова О. В., Панин А.И. Неэмпирические расчеты молекул. — М.:Санкт-Петербург, 2002. — 231 с.16. Koch W., Holthausen M. C. A Chemist’s Guide to Density FunctionalTheory. Second Edition. –Wiley-VCH Verlag GmbH, 2001.
— 293 p.17. Кон В. Электронная структура вещества — волновые функции ифункционалы плотности // УФН. — 2002. — Т. 172. — № 3. — С. 336–348.18. Parr R. G., Yang W. Density-Functional Theory of Atoms and Molecules. –Oxford University Press, 1989. — 336 p.19. Hohenberg P., Kohn W. Inhomogeneous electron gas // Physical Review B.— 1964. — Vol. 63. — № 3.
— P. 864–871.20. Kohn W., Becke A. D., Parr R. G. Density functional theory ofelectronicstructure // Journal Physical Chemistry. — 1996. — Vol. 100. — №31. — P. 12974–12980.21. Klaus Capelle. A Bird’s-Eye View of Density-Functional Theory. // BrazilianJournal of Physics. — 2006. — Vol. 36. — № 4A. — P. 1318–1343.22. Chelikowsky J.R. The pseudopotential-density functional method (pdfm)applied to nanostructures // Journal Physics D: Applied Physics. — 2000. —Vol. 33.
— P. 33–50.23. Ziegler T. Approximate density functional theory as a practical tool inmolecular energetic and dynamics // Chemical Review. — 1991. — Vol. 91.— P. 651–667.9824. Hohenberg P., Kohn W. Inhomogeneous electron gas // Physical Review B.— 1964. — Vol. 63. — № 3. — P. 864–871.25. Kohn W., Sham L. J. Self-consistent equations including exchange andcorrelation effects // Physical Review B. — 1965. — Vol. 140. — № 4. — P.1133–1138.26.
Kohn W. Electronic structure of matter—wave functions and densityfunctionals // Review Mod. Phys. — 1999. — Vol.71. — P. 1253–1266.27. Kohn W., Sham L. J. Self-Consistent Equations Including Exchange andCorrelation Effects // Physical Review A. — 1965. — Vol. 140. — A1133.28. Scott A.P., Radom L. Harmonic Vibrational Frequencies: An Evaluation ofHartreeFock, Møller-Plesset, Quadratic Configuration Interaction, DensityFunctional Theory, and Semiempirical Scale Factors // J. Phys.Chem. —1996. — Vol. 100. — № 41. — P. 16502–16513.29. Perdew J. P., Wang Y.
Accurate and simple analytic representation of theelectron-gas correlation energy // Phys. Rev. — 1992. — Vol. B45. — P.13244–13249.30. Корлюков А. А., Антипин М. Ю. Исследование строения кристалловорганическихиэлементоорганическихсовременныхквантово-химическихсоединенийрасчетоввсрамкахпомощьютеориифункционала плотности // Успехи химии. — 2012.
— Т. 81. — № 2. — С.105–109.31. Becke A. D. Density-functional exchange-energy approximation with correctasymptotic behaviour // Phys. Rev. A. — 1988. — Vol. 38. — P. 3098–3100.32. Lee C., Yang W., Parr R. G. Development of the colle-salvetti correlationenergy formula into a functional of the electron density // Phys. Rev. B. —1988. — Vol. 37. — P. 785–789.33. Yan Zhao, Donald G. Truhlar The M06 suite of density functional for maingroup thermochemistry, thermochemical kinetics, noncovalent interactions,excited states, and transition elements: two new functional and systematic99testing of four M06-class functional and 12 other functional // Theor. Chem.Account.
— 2008. — P. 215–241.34. Bauman D. The study of the guest effect on the nematic phase stabilization //Molecular Crystals Liquid Crystals Incorporating Nonlinear Optics. — 1988.— Vol. 159. — P. 197–217.35. Onsager L. Electric Moments of Molecules in Liquids // Journ. Amer. Chem.Soc. — 1936. — Vol. 58. — № 8. — P. 1486–1493.36. Купервассер О.Ю., Жабин С.Н., Мартынов Я.Б., Федулов К.М., ОферкинИ.В., Сулимов А.В., Сулимов В.Б.
Континуальная модель растворителя:программаDISOLV–алгоритмы,реализацияивалидация//Вычислительные методы и программирование. — 2011. — Т.12. — С.246–261.37. Луцык А. И., Суйков С. Ю., Суховий О. В. Исследование возможностейконтинуальной модели раствора для системы неэлектролиты – Hоктанол // Вестн. Донецкого нац. ун-та. Сер. А: Природничі науки. —2012. — Вып. 1. — С. 145–147.38. Tomasi J., Mennucci B.,Cammi R.
Quantum Mechanical ContinuumSolvation Models // Chem. Rev. — 2005. — Vol. 105. — P. 2999–3093.39. Kirkwood J. G. Theory of Solutions of Molecules Containing WidelySeparated Charges with Special Application to Zwitterions // The Journal ofChemical Physics. — 1934. — Vol. 2. — P.
351–361.40. Kirkwood J. G. On the Theory of Strong Electrolyte Solutions // The Journalof Chemical Physics. — 1934. — Vol. 2. — P. 767–781.41. Игнатов С.К. Квантово-химическое моделированиемолекулярнойструктуры, физико-химических свойств и реакционной способностиЧасть 2. Оптимизация молекулярной геометрии и расчет физикохимическихсвойств.—НижнийНовгород:Нижегородскийгосударственный университет им. Н.И. Лобачевского, 2011. — 80 с.42. Frisch M. J., Trucks G. W., and Schlegel H.















