Диссертация (1149808), страница 8
Текст из файла (страница 8)
Ðèñóíîê 47 (ñïðàâà) ïîêàçûâàåòöèè Ðóíãå ïîëèíîìèàëüíûìè ñïëàéíàìè, ïðèj = 0, 1, . . . , 19,çäåñüïîãðåøíîñòü ïðèáëèæåíèÿ ôóíê-h−1 = 0.151, hjïîëó÷àåì èç (99),ε = 0.000203.Ðèñ. 47: Ãðàôèêè ïîãðåøíîñòè ïðèáëèæåíèé ôóíêöèè Ðóíãå ïîëèíîìèàëüíûìèñïëàéíàìè: (ñëåâà):h−1 = 0.25, hj ïîëó÷àåì èç (99), j = 0, 1, 3, 4, 12, 13, 14,hj = 0.8h4 , j = 5, 6, 7, 8, 9, 10, 11, è (ñïðàâà): h−1 = 0.151, hj ïîëó÷àåì èç (99),j = 0, 1, . . . , 19Òåîðåìà 5.Ïóñòü ôóíêöèÿ u(x) òàêàÿ, ÷òî u ∈ C 5 ([a, b]).
Äëÿ ïðèáëèæåíèÿu(x), x ∈ [xj , xj+1 ] èç (92) (98) èìååì:|ũ(x) − u(x)|[xj ,xj+1 ] ≤ K3 h5 ku(5) k[xj−1 ,xj+1 ] ,(100)|ũ0 (x) − u0 (x)|[xj ,xj+1 ] ≤ K4 h4 ku(5) k[xj−1 ,xj+1 ] ,(101)|Ũ (x) − u(x)|[a,b] ≤ K3 h5 ku(5) k[a,b] , K3 = 0.0135,(102)K3 = 0.0135,K4 = 0.064,77Äîêàçàòåëüñòâî.|ωj,0 (x)| ≤1, |ωj+1,0 (x)| ≤ 1, |ωj,1 (x)| ≤ 0.223h, |ωj+1,1 (x)| ≤ 0.1223h, |ωj<−1> (x)| ≤ 0.0605/h.Íåðàâåíñòâî (100) ñëåäóåò èç òåîðåìû Òåéëîðà èÍåðàâåíñòâî (102) ñëåäóåò èç (100). Íåðàâåíñòâî (101) ñëåäóåò èç òåîðåìû Òåé-|ω 0 j,0 (x)| ≤ 1.51/h, |ω 0 j+1,0 (x)| ≤ 1.58/h, |ω 0 j,1 (x)| ≤ 1, |ω 0 j+1,1 (x)| ≤ 1,|ω 0 <−1>(x)| ≤ 0.187/h2 .jëîðà èÅñëè(x, y) ∈ Ωj,k ,òî ïîëîæèì ïðèáëèæåíèå â âèäå òåíçîðíîãî ïðîèçâåäå-íèÿ:ũ(x, y) =1 X1Xu(xj+i , yk+p )ωj+i,0 (x)ωk+p,0 (y)+i=0 p=0+1 X1Xu0y (xj+i , yk+p )ωj+i,0 (x)ωk+p,1 (y)+i=0 p=0y1 ZkXi=0 y+k−1x1 ZjXi=0 x+u(xj+i , t)dtdyωj+i,0 (x)ωk<−1> (y)j−1x1 ZjXi=0 xu(t, yk+i )dtωj<−1> (x)ωk+i,0 (y)+u0y (t, yk+i )dtωj<−1> (x)ωk+i,1 (y)+j−1Zyk Zxju(x, y)dxdyωk<−1> (y)ωj<−1> (x)yk−1 xj−1+1Xu0x (xj , yk+i )dtωj,0 (x)ωk+i,0 (y)+i=0+1Xu00xy (xj , yk+i )dtωj,0 (x)ωk+i,1 (y)+i=0Zyk+u0x (xj , t)dtωj,1 (x)ωk<−1> (y),(103)yk−1ãäåωk,0 (yk +t1 h)= −78 2 32 3 15 4t + t + t + 1,31 1 31 1 31 178(104)48 2 28 3 45 4t+ t− t,31 1 31 1 31 1548539ωk,1 (yk +t1 h)= − ht21 − ht31 + ht41 +t1 h,62316227 2435 4ωk+1,1 (yk + t1 h)= −h t1 −h t31 +ht ,623162 11ωk<−1> (yk + t1 h)= (30 t21 − 60 t31 + 30 t41 )/h.31ωk+1,0 (yk + t1 h)=5.2.2(105)(106)(107)(108)Òðèãîíîìåòðè÷åñêèå ñïëàéíû îäíîé ïåðåìåííîéÎáîçíà÷èì êàêeue(x)ïðèáëèæåíèå ôóíêöèèu(x)íà ïðîìåæóòêå[xj , xj+1 ]:eue(x) = u(xj )eωj,0 (x) + u(xj+1 )eωj+1,0 (x)+u0 (xj )eωj,1 (x) + u0 (xj+1 )eωj+1,1 (x)+Zxj+ u(t)dt ωej<−1> (x), x ∈ [xj , xj+1 ].(109)xj−1ωej,0 (x), ωej+1,0 (x), ωej,1 (x), ωej+1,1 (x), ωej<1> (x),ïîëó÷èì èç ñè-eue(x) ≡ u(x), u(x) = 1, sin(kx), cos(kx), k = 1, 2.(110)Áàçèñíûå ñïëàéíûñòåìû:x =jh + th, t ∈ [0, 1] ïîëó÷àåì ñëåäóþùèå ôîðìóëû:ωej,0 (xj +th) = 4 sin(2 h)−sin(h)−6 sin(3 h)+4 sin(4 h)−sin(5 h)−8 sin(3 h+t h) + 2 sin(−3 h + t h) − 2 sin(2 t h + h) − sin(2 t h − h) − sin(3 h + 2 t h) +4 sin(−3 h + 2 t h) − 2 sin(t h + h) + 8 sin(t h − h) + 2 sin(4 h + t h) − 6 sin(−2 h +t h) + 6 sin(2 h + t h) − 2 sin(−4 h + t h) + 4 sin(2 t h + 2 h) − 4 sin(2 t h − 2 h) +2 h cos(−3 h + 2 t h) + 6 h cos(2 t h − h) + 12 h cos(t h + h) − 4 h cos(−3 h + t h) −8 h cos(t h) − 8 h cos(2 t h) / − 16 h + 24 sin(2 h) − 12 sin(h) − 21 sin(3 h) +8 sin(4 h) + 18 h cos(h) − 2 h cos(3 h) − sin(5 h) ,ωej+1,0 (xj + th) = 4 sin(4 h) − 8 h cos(t h − h) + 20 sin(2 h) + 2 sin(2 t h +h) + sin(2 t h − h) − 4 sin(2 t h + 2 h) + 4 sin(2 t h − 2 h) + 12 h cos(−2 h + t h) −4 h cos(2 h + t h) − 8 h cos(2 t h − 2 h) + sin(3 h + 2 t h) − 4 sin(−3 h + 2 t h) −15 sin(3 h) − 11 sin(h) + 8 sin(3 h + t h) − 2 sin(−3 h + t h) + 6 h cos(2 t h − h) +2 h cos(2 t h+h)−2 sin(4 h+t h)+2 sin(−4 h+t h)+2 sin(t h+h)−8 sin(t h−h)−Èç (110) è79 6 sin(2 h+t h)+6 sin(−2 h+t h) / −16 h+24 sin(2 h)−12 sin(h)−21 sin(3 h)+8 sin(4 h) + 18 h cos(h) − 2 h cos(3 h) − sin(5 h) ,ωej,1 (xj +th) = 16−2 cos(2 h)−17 cos(h)−cos(5 h)+2 cos(3 h)+6 cos(−3 h+2 t h)+13 cos(2 t h−h)+12 cos(t h+h)−8 cos(t h)−8 cos(2 t h)−6 cos(t h−h)+6 cos(−2 h+t h)+2 cos(2 h+t h)−10 cos(2 t h−2 h)−2 cos(2 t h+h)+2 cos(4 h+t h) − cos(3 h + 2 t h) − 7 cos(3 h + t h) + 4 cos(2 t h + 2 h) − 2 cos(−4 h + 2 t h) +cos(−5 h + t h) − 2 cos(−4 h + t h) + 2 cos(4 h) − 6 h sin(t h + h) − 2 h sin(−3 h+t h) + 8 h sin(t h) − 6 h sin(2 t h − h) + 2 h sin(−3 h + 2 t h) + 4 h sin(2 t h) / 16 h −24 sin(2h) + 12 sin(h) + 21 sin(3 h) − 8 sin(4 h) − 18 h cos(h) + 2 h cos(3 h) +sin(5 h) ,ωej+1,1 (xj + th) = 14 cos(2 h) − 7 cos(h) − 9 cos(3 h) + 2 cos(−3 h + 2 t h) +3 cos(2 t h − h) − 10 cos(t h + h) + 2 cos(−3 h + t h) + 6 cos(t h) − 6 cos(2 t h) +4 cos(t h−h)−4 cos(−2 h+t h)−4 cos(2 t h−2 h)+10 cos(2 t h+h)−cos(4 h+t h)+cos(3 h + 2 t h) + 4 cos(3 h + t h) − 6 cos(2 t h + 2 h) − cos(−4 h + t h) + 2 cos(4 h) +6 h sin(2 t h − h) + 2 h sin(2 h + t h) + 6 h sin(−2 h + t h) − 4 h sin(2 t h − 2 h) −8 h sin(t h−h)−2 h sin(2 t h+h) / −16 h+24 sin(2 h)−12 sin(h)−21 sin(3 h)+8 sin(4 h) + 18 h cos(h) − 2 h cos(3 h) − sin(5 h) ,<−1>ωek(xj + th) = − 16 − 2 cos(−3 h + 2 t h) − 2 cos(2 t h + h) − 12 cos(2 t h −h) − 2 cos(3 h) + 8 cos(t h) + 18 cos(h) + 4 cos(−3 h + t h) − 12 cos(t h + h) +8 cos(t h − h) + 8 cos(2 t h − 2 h) + 8 cos(2 t h) − 12 cos(−2 h + t h) + 4 cos(2 h +t h) / − 16 h + 24 sin(2 h) − 12 sin(h) − 21 sin(3 h) + 8 sin(4 h) + 18 h cos(h) −2 h cos(3 h) − sin(5 h) .Ìîæåò áûòü ïîêàçàíî, ÷òî ñëåäóþùèå ôîðìóëû, óñòàíàâëèâàþùèå ñîîòíîøåíèÿ ìåæäó ïîëèíîìèàëüíûìè è òðèãîíîìåòðè÷åñêèì ñïëàéíàìè, âåðíû:ωej,0 (xj + th) = 1 + (32/31)t3 − (78/31)t2 + (15/31)t4 + O(h2 ),ωej+1,0 (xj + th) = (28/31)t3 + (48/31)t2 − (45/31)t4 + O(h2 ),ωej,1 (xj + th) = (t − (54/31)t3 − (39/62)t2 + (85/62)t4 )h + O(h3 ),ωej+1,1 (xj + th) = ((−4/31)t3 − (27/62)t2 + (35/62)t4 )h + O(h3 ),ωek<−1> (xj + th) = (−(60/31)t3 + (30/31)t2 + (30/31)t4 )h−1 + O(h).80Ãðàôèêè 48 ïîêàçûâàþò ïîãðåøíîñòè ïðèáëèæåíèé ôóíêöèè7 cos(2x) + 5 sin(x) = 0.00176, è (ñïðàâà) òðèãîíî= xj + h, h = 2/9, n = 9, Digits = 25.(ñëåâà) ïîëèíîìèàëüíûìè ñïëàéíàìè, çäåñüìåòðè÷åñêèìè ñïëàéíàìè, çäåñüxj+1Ðèñ.
48: Ãðàôèêè ïîãðåøíîñòåé ïðèáëèæåíèé ôóíêöèèâà)7 cos(2x)+5 sin(x): (ñëå-ïîëèíîìèàëüíûìè ñïëàéíàìè, (ñïðàâà) òðèãîíîìåòðè÷åñêèìè ñïëàéíàìèÃðàôèêè 49 ïîêàçûâàþò ïîãðåøíîñòè ïðèáëèæåíèé ôóíêöèè15 cos(2x) sin(exp(x)) = 0.00519, è (ñïðàâà) òðèãîíî = 0.00425, xj+1 = xj + h, h = 2/9, n = 9.(ñëåâà) ïîëèíîìèàëüíûìè ñïëàéíàìè, çäåñüìåòðè÷åñêèìè ñïëàéíàìè, çäåñüÐèñ. 49: Ãðàôèêè ïîãðåøíîñòåé ïðèáëèæåíèé ôóíêöèè15 cos(2x) sin(exp(x)):(ñëåâà) ïîëèíîìèàëüíûìè ñïëàéíàìè, (ñïðàâà) òðèãîíîìåòðè÷åñêèìè ñïëàéíàìè81Ãðàôèêè 50 ïîêàçûâàþò ïðèáëèæåíèå ôóíêöèèsin(x − y) cos(x − y)öåí-òðàëüíûìè ïîëèíîìèàëüíûìè ñïëàéíàìè (ñëåâà), è ïîãðåøíîñòè ïðèáëèæåíèÿ(ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1].Ðèñ.
50: Ãðàôèêè ïðèáëèæåíèé ôóíêöèèsin(x − y) cos(x − y)öåíòðàëüíûìèïîëèíîìèàëüíûìè ñïëàéíàìè (ñëåâà), ïîãðåøíîñòè ïðèáëèæåíèÿ ïîëèíîìèàëüíûìè ñïëàéíàìè (ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1]Ãðàôèêè 51 ïîêàçûâàþò ïðèáëèæåíèå ôóíêöèèx·exp(−x2 −y 2 ) öåíòðàëüíû-ìè ïîëèíîìèàëüíûìè ñïëàéíàìè (ñëåâà), è ïîãðåøíîñòè ïðèáëèæåíèÿ (ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1].Ðèñ. 51: Ãðàôèêè ïðèáëèæåíèé ôóíêöèèx · exp(−x2 − y 2 ) öåíòðàëüíûìè ïîëè-íîìèàëüíûìè ñïëàéíàìè (ñëåâà), ïîãðåøíîñòè ïðèáëèæåíèÿ ïîëèíîìèàëüíûìè ñïëàéíàìè (ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1]82Ãðàôèêè 52 ïîêàçûâàþò ïðèáëèæåíèå ôóíêöèè1(1+25x2 )(1+25y 2 ) öåíòðàëüíû-ìè ïîëèíîìèàëüíûìè ñïëàéíàìè (ñëåâà), è ïîãðåøíîñòè ïðèáëèæåíèÿ(ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1].Ðèñ.
52: Ãðàôèêè ïðèáëèæåíèé ôóíêöèè1(1+25x2 )(1+25y 2 ) öåíòðàëüíûìè ïîëèíî-ìèàëüíûìè ñïëàéíàìè (ñëåâà), ïîãðåøíîñòè ïðèáëèæåíèÿ ïîëèíîìèàëüíûìèñïëàéíàìè (ñïðàâà), ãäåh = 0.2, Ω = [−1, 1] × [−1, 1]Ãðàôèê 53 ïîêàçûâàåò ïðèáëèæåíèå ôóíêöèèsin(x − y) cos(x − y) öåíòðàëü-íûìè ïîëèíîìèàëüíûìè ñïëàéíàìè.Ðèñ. 53: Ãðàôèê ïðèáëèæåíèÿ ôóíêöèèïîëèíîìèàëüíûìè ñïëàéíàìè.83sin(x − y) cos(x − y)öåíòðàëüíûìè5.3Äèñêðåòíàÿ âåðñèÿ ïîëèíîìèàëüíûõ èíòåãðîäèôôåðåíöèàëüíûõ ñïëàéíîâÐàññìîòðèì ðåøåíèÿ çàäà÷è ìîäåëèðîâàíèÿ íåêîòîðîé àïïðîêñèìèðóþùåéôóíêöèè, êîòîðàÿ îïèñûâàåò ýêñïåðèìåòàëüíûé çàêîí ðàñïðåäåëåíèÿ, ñ èñïîëüçîâàíèåì ïðåäëîæåííûõ ïîëèíîìèàëüíûõ ñïëàéíîâ. Èñïîëüçóåì êâàäðàòóðíóþôîðìóëó äëÿ ïðèáëèæ¼ííîãî âû÷èñëåíèÿ èíòåãðàëîâ â (92) è (70):xk+1Z323u(x)dx = hu(xk ) + hu(xk+1 ) + h2 u0 (xk )5520xkh2 0h3 00− u (xk+1 ) + u (xk ) + O(h5 ),2060Zxk2h3hu(x)dx = u(xk−1 ) + u(xk )+55xk−13h2 0h2 0h3 00u (xk−1 )− u (xk )+ u (xk−1 )+O(h5 ),202060è èñïîëüçóåì ôîðìóëû äëÿ ÷èñëåííîãî äèôôåðåíöèðîâàíèÿïðèk = 2, 3, .
. . , n − 2:u00 (xk ) =1(−2u(xk−2 )+24h232u(xk−1 ) − 60u(xk ) + 32u(xk+1 ) − 2u(xk+2 )) + O(h6 );u0 (xk ) =1(u(xk−2 ) − 8u(xk−1 )+12h8u(xk+1 ) − u(xk+2 )) + O(h5 ).äëÿk = 0, 1:u00 (xk )=1(70u(xk )−208u(xk+1 )24h2+228u(xk+2 ) − 112u(xk+3 ) + 22u(xk+4 )) + O(h5 ),u0 (xk ) =1(−25u(xk ) + 48u(xk+1 )12h−36u(xk+2 ) + 16u(xk+3 ) − 3u(xk+4 )) + O(h5 );84äëÿk = n − 1, n:u00 (xk ) =1(70u(xk ) − 208u(xk−1 )+24h2228u(xk−2 ) − 112u(xk−3 ) + 22u(xk−4 )) + O(h5 ),u0 (xk ) =1(25u(xk ) − 48u(xk−1 )+12h36u(xk−2 ) − 16u(xk−3 ) + 3u(xk−4 )) + O(h5 ).Òàáëèöà 15 ïîêàçûâàåò ôàêòè÷åñêèå ïîãðåøíîñòè ïðèáëèæåíèé ôóíêöèéè èõ ïðîèçâîäíûõ ëåâîñòîðîííèìè èíòåãðî-äèôôåðåíöèàëüíûìè ñïëàéíàìè.ÇäåñüR̃L- ïîãðåøíîñòü ïðèáëèæåíèÿ ôóíêöèè,R̃1L- ïîãðåøíîñòü ïðèáëè-æåíèÿ ïåðâîé ïðîèçâîäíîé â ñëó÷àå, êîãäà èçâåñòíû ëèøü çíà÷åíèÿ ôóíêöèèu(xk ), h = 0, .
. . , n, x ∈ [−1, 1], h = 0.1.Òàáëèöà 16 ïîêàçûâàåò òåîðåòè÷åñêèå ïîãðåøíîñòèôóíêöèé è èõ ïðîèçâîäíûõR̃1T LR̃T Lïðèáëèæåíèéëåâîñòîðîííèìè èíòåãðî-äèôôåðåíöèàëüíûìèñïëàéíàìè.Òàáëèöà 15u(x)R̃Lsin(3x) cos(5x) 0.22 · 10−3tg(x)0.32 · 10−4cos(2x)0.49 · 10−610.12 · 10−21+25x2R̃1L0.73 · 10−20.10 · 10−20.16 · 10−40.45 · 10−1Òàáëèöà 16u(x)R̃T Lsin(3x) cos(5x) 0.36 · 10−2tg(x)0.76 · 10−3cos(2x)0.70 · 10−510.69 · 10−11+25x2R̃1T L0.100.22 · 10−10.20 · 10−31.98 [101] îòìå÷åíî, ÷òî ½íà ïðàêòèêå, èñïîëüçîâàíèå âåðîÿòíîñòíîãî ïîäõîäàê âû÷èñëåíèþ ïîãðåøíîñòåé èçìåðåíèÿ ïðåäïîëàãàåò çíàíèå àíàëè÷òè÷åñêîéìîäåëè çàêîíà ðàñïðåäåëåíèÿ ðàññìàòðèâàåìîé îøèáêè.
Âñòðå÷àþùèåñÿ â ìåòðîëîãèè ðàñïðåäåëåíèÿ ñèëüíî ðàçíÿòñÿ. Áîëüøàÿ ÷àñòü ýòèõ ðàñïðåäåëåíèé áèìîäàëüíàÿ.85Ãðàôèê 54 (ñëåâà) ïîêàçûâàåò ãèñòîãðàììó, ïëîòíîñòü ðàñïðåäåíåíèÿ è ïðèáëèæåíèå áèìîäàëüíîãî ðàñïðåäåëåíèÿfi = √f = (f1 + f2 )/2,ãäå122e−(x−αi ) /2σi ,2πσii = 1, 2, σ1 = 0.5, σ2 = 0.8, α1 = −0.8, α2 = 1,ñïëàéíîâ íà ïðîìåæóòêå [−2, 3].Ãðàôèê 54 (ñïðàâà) ïîêàçûâàåò ïîãðåøíîñòüñ ïîìîùüþ ïîëèíîìèàëüíûõïðèáëèæåíèÿ ïëîòíîñòè ðàñ-ïðåäåëåíèé.Ãðàôèê 55 (ñëåâà) ïîêàçûâàåò ãèñòîãðàììó, ïëîòíîñòü ðàñïðåäåëåíèÿ è ïðèáëèæåíèå ïëîòíîñòè ðàñïðåäåëåíèÿf0 = √ãäåσ = 0.5,íà èíòåðâàëå122e−x /2σ ,2πσ[−2, 2].Ãðàôèê 55 (ñïðàâà) ïîêàçûâàåò ïîãðåøíîñòü ïðèáëèæåíèÿ ïëîòíîñòè ðàñïðåäåëåíèÿ.Ðèñ. 54: Ãèñòîãðàììà, ïëîòíîñòü ðàñïðåäåëåíèÿ è ïðèáëèæåíèå áèìîäàëüíîãî ðàñïðåäåëåíèÿ (ñëåâà); ïîãðåøíîñòü ïðèáëèæåíèÿ ïëîòíîñòè ðàñïðåäåëåíèÿ(ñïðàâà).86Ðèñ.
55: Ãèñòîãðàììà, ïëîòíîñòü ðàñïðåäåëåíèÿ è ïðèáëèæåíèå ðàñïðåäåëåíèÿf0 (ñëåâà);ïîãðåøíîñòü ïðèáëèæåíèÿ ïëîòíîñòè ðàñïðåäåëåíèÿ (ñïðàâà).87Çàêëþ÷åíèå ðàáîòå ïîñòðîåíû ëîêàëüíûå ïîëèíîìèàëüíûå è òðèãîíîìåòðè÷åñêèå áàçèñíûå ñïëàéíû, òàêèå, ÷òî èñõîäíàÿ ôóíêöèÿ è ïîñòðîåííîå ïðèáëèæåíèå äàþò îäèíàêîâûå êîëè÷åñòâåííûå õàðàêòåðèñòèêè ïðîñòðàíñòâà (ïëîùàäè è îáúåìû). Àïïðîêñèìàöèÿ ôóíêöèé ñòðîèòñÿ ñ ïîìîùüþ ëèíåéíîé êîìáèíàöèè çíà÷åíèé ôóíêöèè, åå ïðîèçâîäíûõ â óçëàõ ñåòêè, èíòåãðàëîâ ïî ñåòî÷íûì èíòåðâàëàì è ïðåäëàãàåìûõ áàçèñíûõ ñïëàéíîâ. Ïðè ýòîì ïîãðåøíîñòü àïïðîêñèìàöèè èìååò ïÿòûé ïîðÿäîê.Äëÿ ïîñòðîåííûõ ïðèáëèæåíèé ïðèâåäåíû îöåíêè ïîãðåøíîñòåé, à òàêæåïðèâåäåíû ðåçóëüòàòû ÷èñëåííûõ ýêñïåðèìåíòîâ, ïîäòâåðæäàþùèå òåîðåòè÷åñêèå âûâîäû. äèññåðòàöèè:1.















