Диссертация (1149808), страница 2
Текст из файла (страница 2)
Àïïðîêñèìàöèÿ ôóíêöèé ñòðîèòñÿ ñ ïîìîùüþ ëèíåéíîé êîìáèíàöèè çíà÷åíèé ôóíêöèè, åå ïðîèçâîäíûõ â óçëàõ ñåòêè, èíòåãðàëàì ïî ñåòî÷íûì èíòåðâàëàì è ïðåäëàãàåìûõ áàçèñíûõ ñïëàéíîâ. Ïðè ýòîì ïîãðåøíîñòü àïïðîêñèìàöèè èìååò ïÿòûé ïîðÿäîê.Ëè÷íûé âêëàä àâòîðàËè÷íûé âêëàä àâòîðà ñîñòîèò â âûïîëíåíèè èññëåäîâàíèé, èçëîæåííûõ âäèññåðòàöèîííîé ðàáîòå, ðåàëèçàöèè àëãîðèòìîâ ïîñòðåíèÿ ïðåäëîæåííûõ àïïðîêñèìàöèé, ïðîâåäåíèè ÷èñëåííûõ ýêñïåðèìåíòîâ, à òàêæå â îôîðìëåíèè ðåçóëüòàòîâ â âèäå ñòàòåé è íàó÷íûõ äîêëàäîâ.Òåîðåòè÷åñêàÿ è ïðàêòè÷åñêàÿ çíà÷èìîñòü äàííîé ðàáîòå ïðåäëàãàþòñÿ èíòåãðî-äèôôåðåíöèàëüíûå ñïëàéíû äëÿ ïîñòðîåíèÿ àïïðîêñèìàöèé ôóíêöèé îäíîé è äâóõ ïåðåìåííûõ. Âïåðâûå òàêîéïîäõîä áûë ïðåäëîæåí Êèðååâûì Â.È.
Äàííûé ïîäõîä ïîçâîëÿåò ïîëó÷àåìûìàïïðîêñèìàöèÿì óäîâëåòâîðÿòü óñëîâèþ êîíñåðâàòèâíîñòè, òî åñòü ñîõðàíÿòü7èíòåãðàëüíûå ñâîéñòâà àïïðîêñèìèðóåìûõ ôóíêöèé, ÷òî ïîçâîëÿåò ïîâûøàòüêà÷åñòâî àïïðîêñèìàöèè ïðè ìîäåëèðîâàíèè òåõíè÷åñêèõ ïîâåðõíîñòåé çà ñ÷¼òñîõðàíåíèÿ ðàâåíñòâ ïëîùàäåé è îáú¼ìîâ.Ïîëó÷åííûå ðåçóëüòàòû ìîãóò áûòü èñïîëüçîâàíû äëÿ àïïðîêñèìàöèè ôóíêöèé, ïîñòðîåíèÿ ïîâåðõíîñòåé, îáðàáîòêè ÷èñëîâûõ ïîòîêîâ.Äîêëàäû è ïóáëèêàöèè ïî òåìå äèññåðòàöèîíííîé ðàáîòûÍà òåìó äèññåðòàöèîííîé ðàáîòû âûïîëíåíû ïóáëèêàöèè: [6], [69], [70], [71],[72], [73], à òàêæå äîêëàä [7].Ñòðóêòóðà è îáúåì äèññåðòàöèèÄèññåðòàöèÿ ñîñòîèò èç ââåäåíèÿ, ïÿòè ãëàâ, çàêëþ÷åíèÿ, áèáëèîãðàôèè èïðèëîæåíèÿ. Îáùèé îáúåì äèññåðòàöèè ñîñòàâëÿåò 106 ñòðàíèö.
 òåêñòå ðàáîòû ñîäåðæèòñÿ 16 òàáëèö è 55 ðèñóíêîâ.  áèáëèîãðàôèè ðàáîòû ñîäåðæèòñÿ113 íàèìåíîâàíèé.  ïðèëîæåíèè ïðèâåä¼í 1 ëèñòèíã ïðîãðàììû.Îñíîâíîå ñîäåðæàíèå ïåðâîé ãëàâå ðàññìàòðèâàåòñÿ ïîñòðîåíèå íåïðåðûâíî äèôôåðåíöèðóåìûõ áàçèñíûõ ñïëàéíîâ, íåïðåðûâíî äèôôåðåíöèðóåìîãî ïðèáëèæåíèÿ ôóíêöèé, ñìîäåëèðîâàííîãî ñ ïîìîùüþ äàííûõ áàçèñíûõ ñïëàéíîâ, çíà÷åíèé ôóíêöèè è å¼ ïåðâîé ïðîèçâîäíîé â óçëàõ ñåòêè, à òàêæå çíà÷åíèé èíòåãðàëîâ îòýòîé ôóíêöèè ïî ñåòî÷íûì èíòåðâàëàì, ìîäåëèðîâàíèå îöåíîê ïîãðåøíîñòåéàïïðîêñèìàöèè âL2 , à òàêæå ìîäåëèðîâàíèå äâàæäû íåïðåðûâíî äèôôåðåíöè-ðóåìîãî ïðèáëèæåíèÿ ôóíêöèé ñ ïîìîùüþ áàçèñíûõ èíòåãðî-äèôôåðåíöèàëüíûõ ñïëàéíîâ ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè ïåðâîé âûñîòû. Äîêàçàíà òåîðåìà îá îöåíêå ïîãðåøíîñòè ïðèáëèæåíèÿ ôóíêöèè, à òàêæå å¼ ïåðâîé è âòîðîéïðîèçâîäíûõ. Ïðèâåäåíû ÷èñëåííûå ïðèìåðû.Âî âòîðîé ãëàâå ðàññìàòðèâàåòñÿ ìîäåëèðîâàíèå ñðåäíåêâàäðàòè÷åñêîãîïðèáëèæåíèÿ ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè ïåðâîé âûñîòû, ñìîäåëèðîâàííîãî ñ ïîìîùüþ ïîëó÷åííûõ â ïåðâîé ãëàâå íåïðåðûâíî äèôôåðåíöèðóåìûõáàçèñíûõ ñïëàéíîâ. òðåòüåé ãëàâå ðàññìàòðèâàåòñÿ ìîäåëèðîâàíèå ïðèáëèæåíèé ôóíêöèé è8èõ ïðîèçâîäíûõ ñ ïîìîùüþ ëåâîñòîðîííèõ íåïðåðûâíî äèôôåðåíöèðóåìûõ ïîëèíîìèàëüíûõ èíòåãðî-äèôôåðåíöèàëüíûõ ñïëàéíîâ ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè ïåðâîé âûñîòû.
Äëÿ ìîäåëèðîâàíèÿ ïðèáëèæåíèÿ íà êàæäîì èíòåðâàëå òðåáóþòñÿ çíà÷åíèÿ ôóíêöèè è å¼ ïåðâîé ïðîèçâîäíîé â óçëàõ ñåòêè èçíà÷åíèÿ èíòåãðàëà ôóíêöèè íà ïðîìåæóòêå. Åñëè çíà÷åíèÿ ôóíêöèè è ïåðâîé ïðîèçâîäíîé è/èëè çíà÷åíèå èíòåãðàëà ôóíêöèè íà ïðîìåæóòêå íå èçâåñòíî, òîãäà èñïîëüçóþòñÿ âûðàæåíèÿ, âûâåäåííûå äëÿ äàííîãî ñëó÷àÿ, è äîêàçàíà òåîðåìà îá îöåíêå ïîãðåøíîñòè ïðèáëèæåíèÿ ïÿòîãî ïîðÿäêà. Ìîäåëèðóþòñÿ ïðèáëèæåíèÿ ôóíêöèé è èõ ïðîèçâîäíûõ ëåâîñòîðîííèìè íåïðåðûâíîäèôôåðåíöèðóåìûìè ñïëàéíàìè ïÿòîãî ïîðÿäêà, è âûâîäÿòñÿ âûðàæåíèÿ ïðèáëèæåíèé ñ èñïîëüçîâàíèåì çíà÷åíèé ôóíêöèè, äà¼òñÿ îøèáêà ïðèáëèæåíèÿ. ÷åòâåðòîé ãëàâå ðàññìàòðèâàåòñÿ ïîñòðîåíèå áàçèñíûõ ñïëàéíîâ äâóõïåðåìåííûõ, êîòîðûå ìîãóò áûòü èñïîëüçîâàíû äëÿ ìîäåëèðîâàíèÿ ïðèáëèæåíèé ôóíêöèé. Ïðèáëèæåíèå ìîäåëèðóåòñÿ â êàæäîé ýëåìåíòàðíîé ïðÿìîóãîëüíîé îáëàñòè ñåòêè óçëîâ, åñëè èçâåñòíû çíà÷åíèÿ ôóíêöèè â óçëàõ è çíà÷åíèÿèíòåãðàëîâ ïî ýëåìåíòàðíûì îáëàñòÿì. ïÿòîé ãëàâå ñòðîÿòñÿ áàçèñíûå îäíîìåðíûå ïîëèíîìèàëüíûå è òðèãîíîìåòðè÷åñêèå èíòåãðî-äèôôåðåíöèàëüíûå ñïëàéíû ïÿòîãî ïîðÿäêà àïïðîêñèìàöèè.
Îäíîðàçìåðíûé ñëó÷àé îáîáùàåòñÿ íà äâóìåðíûé ñ ïîìîùüþ òåíçîðíîãî ïðîèçâåäåíèÿ ñïëàéíîâûõ ïðèáëèæåíèé. Òàêæå ìîäåëèðóþòñÿ ïðèáëèæåíèÿôóíêöèé ñ èñïîëüçîâàíèåì àäàïòèâíîé ñåòêè óçëîâ. çàêëþ÷åíèè ñôîðìóëèðîâàíû îñíîâíûå ðåçóëüòàòû ðàáîòû. ïðèëîæåíèå âûíåñåí èñõîäíûé êîä ïðîãðàììû íà ÿçûêå Maple äëÿ ìîäåëèðîâàíèÿ íåïðåðûâíîãî ïðèáëèæåíèÿ ôóíêöèé ñïëàéíàìè äâóõ ïåðåìåííûõíà îñíîâå ðàçðûâíîãî ñ ïîìîùüþ äîïîëíèòåëüíîé èíòåðïîëÿöèè.91Ìîäåëèðîâàíèå ïðèáëèæåíèé èíòåãðî-äèôôåðåíöèàëüíûìè ñïëàéíàìè ïÿòîãî ïîðÿäêà ïåðâîé âûñîòû1.1Ïîñòðîåíèå áàçèñíûõ ñïëàéíîâÐàññìîòðèì ïðîìåæóòîêíàòóðàëüíîå ÷èñëîn[a, b],ãäåaèbè ïîñòðîèì ñåòêó óçëîâ âåùåñòâåííûå ÷èñëà. Âîçüì¼ì{xj }ñ øàãîì(b−a)n :h=a = x0 < ...
< xj−1 < xj < xj+1 < ... < xn = b.Ïóñòü â óçëàõ ñåòêè{xj }[xk , xk+1 ]u, u ∈ C 5 [a, b], è ååR xk+1u(t)dt. Ðàññìîòðèì íàxkçàäàíû çíà÷åíèÿ ôóíêöèèïåðâîé ïðîèçâîäíîé, à òàêæå èçâåñòíû çíà÷åíèÿêàæäîì(1)ïðèáëèæåíèå äëÿu(x)â âèäå:ue(x) = u(xk )ωk,0 (x) + u(xk+1 )ωk+1,0 (x)++ u0 (xk )ωk,1 (x) + u0 (xk+1 )ωk+1,1 (x) +Z!xk+1u(t)dtωk<1> (x),(2)xkωk,0 (x), ωk+1,0 (x), ωk,1 (x), ωk+1,1 (x), ωk<1> (x), supp ωk,α = [xk−1 , xk+1 ], α = 0, 1,supp ωk<1> = [xk , xk+1 ], îïðåäåëÿåì èç óñëîâèéãäåue(x) = u(x)ïðèu(x) = xi , i = 0, 1, 2, 3, 4.(3)Àïïðîêñèìàöèè âèäà (2) áóäåì íàçûâàòü öåíòðàëüíûìè.Óñëîâèÿ (3) ïðèâîäÿò ê ñèñòåìå ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé îòíîñèòåëüíîωj,α (x), j = k, k + 1, α = 0, 1, ωk<1> (x):ωk,0 (x) + ωk+1,0 (x) + (xk+1 − xk )ωk<1> (x) = 1,(4)xk ωk,0 (x) + xk+1 ωk+1,0 (x) + ωk,1 (x) + ωk+1,1 (x)++ (x2k+1 /2 − x2k /2)ωk<1> (x) = x,10(5)x2k ωk,0 (x) + x2k+1 ωk+1,0 (x) + 2xk ωk,1 (x) + 2xk+1 ωk+1,1 (x)++ (x3k+1 /3 − x3k /3)ωk<1> (x) = x2 ,(6)x3k ωk,0 (x) + x3k+1 ωk+1,0 (x) + 3x2k ωk,1 (x) + 3x2k+1 ωk+1,1 (x)++ (x4k+1 /4 − x4k /4)ωk<1> (x) = x3 ,(7)x4k ωk,0 (x) + x4k+1 ωk+1,0 (x) + 4x3k ωk,1 (x) + 4x3k+1 ωk+1,1 (x)++ (x5k+1 /5 − x5k /5)ωk<1> (x) = x4 .(8)Ñèñòåìà óðàâíåíèé (4)(8) íàçûâàåòñÿ àïïðîêñèìàöèîííûìè ñîîòíîøåíèÿìè.ωk,0 , ωk,1 , ωk+1,0 , ωk+1,1 , ωk<1> ∈ C 1 (R1 ).Ïóñòü kf k = kf k[a,b] = max[a,b] |f |.Îòìåòèì, ÷òî ïðè ðàâíîìåðíîé ñåòêå óçëîâ ñ øàãîì h íà ïðîìåæóòêå [xk , xk+1 ]Íåòðóäíî âèäåòü, ÷òîñïðàâåäëèâî óòâåðæäåíèå.Ëåììà 1.Ïóñòü ôóíêöèÿ u ∈ C (5) [xk , xk+1 ].
Òîãäà ïðè x ∈ [xk , xk+1 ] âûïîëíÿ-þòñÿ ñîîòíîøåíèÿ:|u(x) − ue(x)| ≤ h5 K0 ku(5) k[xk ,xk+1 ] , K0 = const > 0,|u0 (x) − ue0 (x)| ≤ h4 K1 ku(5) k[xk ,xk+1 ] , K1 = const > 0,à ïðè x ∈ [xk , xk+1 ):|u00 (x) − ue00 (x)| ≤ h3 K2 ku(5) k[xk ,xk+1 ] , K2 = const > 0.Äîêàçàòåëüñòâî.u(xk+1 )èu0 (xk+1 )Äåéñòâèòåëüíî, ïðèx ∈ [xk , xk+1 ]ïðåäñòàâëÿÿñ ïîìîùüþ ôîðìóëû Òåéëîðà â îêðåñòíîñòè11u(x),xk ,ïîëó÷èìue(x) − u(x) = u(xk ) ωk,0 (x) + ωk+1,0 (x) + (xk+1 − xk )ωk<1> (x) − 1 ++u0 (xk ) ((xk+1 − xk )ωk,0 (x) + ωk,1 (x) + ωk+1,1 (x)+(xk+1 − xk )2 <1>+ωk (x) − (x − xk ) +2!(xk+1 − xk )200+u (xk )ωk+1,0 (x) + (xk+1 − xk )ωk+1,1 (x)+2!(x − xk )2(xk+1 − xk )3 <1>ωk (x) −++3!2!(xk+1 − xk )2(xk+1 − xk )3000+u (xk )ωk+1,0 (x) +ωk+1,1 (x)+3!2!(xk+1 − xk )4 <1>(x − xk )3+ωk (x) −+4!3!(xk+1 − xk )4(xk+1 − xk )3+u0000 (xk )ωk+1,0 (x) +ωk+1,1 (x)+4!3!(x − xk )4(xk+1 − xk )5 <1>ωk (x) −+ R,+5!4!ãäåR=1 (5)1u (τ1 )(xk+1 − xk )5 ωk+1,0 (x) + u(5) (τ2 )(xk+1 − xk )4 ωk+1,1 (x)+5! Z4!xk+111+u(5) (τ3 )(t − xk )5 dtωk<1> (x) − u(5) (τ4 )(x − xk )5 ,5! xk5!τ1 , τ2 , τ3 , τ4 ∈ [xk , xk+1 ].Îòñþäà ñëåäóåò, ÷òîj = k, k + 1, i = 0, 1,|euk (x) − u(x)| = |R|,åñëè áàçèñíûå ôóíêöèèωj,i (x),íàõîäèì êàê ðåøåíèå ñèñòåìû óðàâíåíèé (4)(8).Îòìåòèì, ÷òî îïðåäåëèòåëü ñèñòåìû óðàâíåíèé (4)(8) ðàâåí−1(xk+1 − xk )9 .30Ðåøèâ ñèñòåìó óðàâíåíèé (4)(8), ïîëó÷àåì ïðèôîðìóëû áàçèñíûõ ñïëàéíîâ:12x ∈ [xk , xk+1 ]ñëåäóþùèåωk,0 (x) = (1/h)4 (5x + h − 5xk )(−3x + h + 3xk )(xk + h − x)2 ,ωk+1,0 (x) = −(1/h)4 (−xk + x)2 (−3x + 3xk + 2h)(−5x + 5xk + 6h),(9)(10)ωk<1> (x) = (30/h5 )(−xk + x)2 (xk + h − x)2 ,(11)ωk,1 (x) = (1/2)(1/h)3 (−xk + x)(2h − 5x + 5xk )(xk + h − x)2 ,(12)ωk+1,1 (x) = (1/2)(1/h)3 (−xk + x)2 (−5x + 3h + 5xk )(xk + h − x).(13)Íåòðóäíî âèäåòü, ÷òî ïðèx ∈ [xk , xk+1 ] èç ôîðìóë (9)(13) ñëåäóþò ñîîòíî-øåíèÿ:|ωk,0 (x)| ≤ 1,Òåïåðü|ωk+1,0 (x)| ≤ 1,1√ √ 31 √ 212−6 h 6 − −6 ≈ 0.0678h,|ωk,1 (x)| ≤4 5 105 101 √ 2 21 √ √13−6 h +6 6 ≈ 0.0226h,|ωk+1,1 (x)| ≤4 5 105 1015|ωk<1> (x)| ≤= 1.875/h.8hïðèìåíÿÿ òåîðåìó î ñðåäíåì, ïîëó÷àåì ïðè x ∈ [xk , xk+1 ]|R| = |eu(x) − u(x)| ≤ ku(5) kh5h4max |ωk+1,0 (x)| +max |ωk+1,1 (x)|+5! x∈[xk ,xk+1 ]4! x∈[xk ,xk+1 ]!5h6h+max |ωk<1> (x)| +.6! x∈[xk ,xk+1 ]5!Îòñþäà|eu(x) − u(x)| ≤ 0.02 h5 ku(5) k[xk ,xk+1 ] .Àíàëîãè÷íî èìååìh5h400|R1 | = |eu (x) − u (x)| ≤ ku kmax |ωk+1,0 (x)| +max |ωk+1,1(x)|+5! x∈[xk ,xk+1 ]4! x∈[xk ,xk+1 ]00(5)6+h6!maxx∈[xk ,xk+1 ]<1>|ω 0 k135(x)| +!h.5!Îòñþäà ñ ó÷åòîì0|ωk,0(x)| ≤ 3.94023/h,0|ωk+1,0(x)| ≤ 3.94023/h,<1>|ω 0 k(x)| ≤ 5.77350/h2 ,0|ωk,1(x)| ≤ 1,0|ωk+1,1(x)| ≤ 1,x ∈ [xk , xk+1 ],ïîëó÷àåì!|eu0 (x) − u0 (x)| ≤11113.94023 + + 5.77350 +h4 ku(5) k[xk ,xk+1 ] =5!4! 6!4!= 0.12419h4 ku(5) k[xk ,xk+1 ] .Äàëåå, òàê êàê ïðèx ∈ [xk , xk+1 )<1>0000|ωk,0(x)| ≤ 15.20000001/h2 , |ωk+1,0(x)| ≤ 36/h2 , |ω 00 k(x)| ≤ 60/h3 ,0000|ωk,1(x)| ≤ 9/h, |ωk+1,1(x)| ≤ 9/h,òî ïðèx ∈ [xk , xk+1 )|R2 | = |ũ00k (x) − u00 (x)| ≤6!11h136 + 9 + 60 +h3 ku(5) k[xk ,xk+1 ] =5!4!6!4!= (4/5)h3 ku(5) k[xk ,xk+1 ] .Ëåììà äîêàçàíà.Çàìå÷àíèå 1.1.















