Диссертация (1149808), страница 10
Текст из файла (страница 10)
Ì.: Íàóêà, 1976. 248 ñ.[51] Ñóááîòèí Þ.Í.ìåòêè.Î êóñî÷íî ïîëèíîìèàëüíîé èíòåðïîëÿöèè. Ìàòåì. çà- 1967. Ò. 1, No 1. Ñ. 6370.[52] Ñóááîòèí Þ.Í.Íàñëåäîâàíèå ñâîéñòâ ìîíîòîííîñòè è âûïóêëîñòè ïðèëîêàëüíîé àïïðîêñèìàöèè. Æóðí. âû÷èñë. ìàòåì. è ìàò. ôèçèêè. 1993.Ò. 33, No 7.
Ñ. 9961003.[53] Ñóááîòèí Þ.Í.Àïïðîêñèìàöèè ïîëèíîìèàëüíûìè è òðèãîíîìåòðè÷åñêè-ìè ñïëàéíàìè òðåòüåãî ïîðÿäêà, ñîõðàíÿþùèå íåêîòîðûå ñâîéñòâà àïïðîêñèìèðóåìûõ ôóíêöèé. Òð. ÈÌÌ ÓðÎ ÐÀÍ 2007. Ò. 13, No 2. Ñ.156166.94Ôîðìîñîõðàíÿþùàÿ ýêñïîíåíöèàëüíàÿ àïïðîêñèìàöèÿ.[54] Ñóááîòèí Þ.Í.Èçâ. âóçîâ. Ìàòåì. 2009, No 11 Ñ. 5360.[55] Ôîðñàéò Äæ., Ìàëüêîëüì Ì., Ìîóëåð Ê.÷åñêèõ âû÷èñëåíèé.[56] Ôë¼ðîâ Þ.À.Ìàøèííûå ìåòîäû ìàòåìàòè- Èçä-âî: Ìèð. M.
1980. 280 c.Ëîêàëüíûé ñèíòåç ïëîñêèõ êðèâûõ ìåòîäîì ââåäåíèÿ ïðî-ñòûõ äîïîëíèòåëüíûõ óçëîâ. Ïðîáëåìû ïðèêëàäíîé ìàòåìàòèêè è èíôîðìàòèêè. Ì., 1987. Ñ. 231239.[57] Øåâàëäèí Â.Ò.Àïïðîêñèìàöèÿ ëîêàëüíûìè ïàðàáîëè÷åñêèìè ñïëàéíàìèñ ïðîèçâîëüíûì ðàñïîëîæåíèåì óçëîâ. Ñèá. æóðí. âû÷èñë. ìàòåìàòèêè.2005. Ò. 8, No 1. Ñ. 7788.[58] Øåâàëäèíà Å.Â.Àïïðîêñèìàöèÿ ëîêàëüíûìè ýêñïîíåíöèàëüíûìè ñïëàé-íàìè ñ ïðîèçâîëüíûìè óçëàì. Ñèá. æóðí. âû÷èñë. ìàòå- ìàòèêè. 2006.Ò.
9, No 4. Ñ. 391402.[59] Øåâàëäèíà Å. Â.Íàñëåäîâàíèå ñâîéñòâ k-ìîíîòîííîñòè ïðè àïïðîêñè-ìàöèè ëîêàëüíûìè êóáè÷åñêèìè ñïëàéíàìè. Ïðîáëåìû òåîðåòè÷åñêîéè ïðèêëàäíîé ìàòåìàòèêè: Òðóäû 40-é Ðåãèîíàëüíîé ìîëîäåæíîé êîíôåðåíöèè. Åêàòåðèíáóðã: ÓðÎ ÐÀÍ, 2009. Ñ. 106110.[60] Øóìèëîâ Á.Ì.Ñïëàéí-àïïðîêñèìàöèîííûå ñõåìû, òî÷íûå íà ìíîãî÷ëå-íàõ. Æóðí. âû÷èñë. ìàòåì. è ìàòåì. ôèç. 1992.
Ò. 32, No 8. C. 11871196.[61] Abbas,M.,Majid,A.A.,Awang,M.N.H.,Ali,rational bi-cubic spline for monotone surface data,J.Md.,Shape-preserving WSEAS Transactions onMathematics, Vol. 11, Issue 7, July 2012, pp. 660-673.[62] Ahmet SezerComparison of spline approximation with the modied likelihoodsin the presence of nuisance parameter. Wseas Transactions on Mathematics.Issue 1, Volume 9, January 2010. p.
111.[63] Akima H.A new method of interpolation and smooth curve tting based onlocal procedures.[64] Behforooz, H. J. Assoc. Comput. Mech. 1970. V. 17. P. 589602.Approximation by integro cubic splines.175, 2006, pp. 8-15.95 Appl. Math. Comput.[65] Behforooz, H.Interpolation by integro quintic splines.
Appl. Math. Comput.216, 2010, pp. 364-367.[66] Birkho; de BoorPiecewise polynomial interpolation and approximation.H. L. Proc. General Motors Symposium of 1964. New York and Amsterdam:Elsevier. 1965, pp. 164190.[67] Boneva, L.I., Kendall, D.G., Stefanov, I.Spline transformations: three newdiagnostic aids for the statistical data-analyst. J.
Royal Statist. Soc. Ser.B, 33, 1971, pp. 1-70.[68] Boujraf,A.,Sbibih,D.,Tahrichi,M.,Tijini,A.A simple method forconstructing integro spline quasi-interpolants, Math. Comput. Simulation.111, 2015, pp. 36-47.[69] Burova I.G., Poluyanov S.V.Construction of twice continuously dierentiableapproximations by integro-dierential splines of fth order and rst level.International Journal of Advanced Research in Engineering and Technology(IJARET), Volume 5, Issue 4, April (2014), pp.
239-246.[70] Burova I.G., Poluyanov S.V., Shirokova Iu.V.On Approximations by polynomialand trigonometrical Integro-Dierential Splines of Two Variables. WSEASTransactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume14, 2015, Art. 33, pp. 345-352.[71] Burova I.G., Poluyanov S.V.On Approximations by polynomial and trigonomet-rical Integro-Dierential Splines of Two Variables. Proceedings of the 18th International Conference on Mathematical Methods, Computational Techniquesand Intelligent Systems (MAMECTIS'16), Venice, Italy, January 29-31, 2016,pp. 103109.[72] Burova I.G., Poluyanov S.V., Shirokova Iu.V.Dierential Splines of Two Variables.On Approximations by Integro- Recent Advances on ComputationalScience and Applications Proceedings of the 4th International Conference onApplied and Computational Mathematics(ICACM'15), 2015, pp.
3337.[73] Burova I.G., Poluyanov S.V.On Approximations by polynomial and trigono-metrical integro-dierential splines. INTERNATIONAL JOURNAL OF MA96THEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, Volume 10, 2016, pp. 190199.On Integro-Dierential Splines Construction.[74] Burova I.G.AppliedandPureMathematics.Proceedinngsofthe Advances in7-thInternationalConference on Finite Dierences, Finite Elements, Finite Volumes, BoundaryElements (F-and-B'14). Gdansk. Poland. May 1517, 2014, pp. 5761.[75] Burova I.G.On Integro-Dierential Splines and Solution of Cauchy Problem. Mathematical Methods and Systems in Science and Engineering, Proc. of the17th International Conf.
on Mathematical Methods, Computational Techniquesand Intelligent Systems (MAMECTIS'15), Tenerife, Canary Islands, Spain,January 10-12, 2015, pp. 4852.[76] Burova Irina, Evdokimova TatjanaOn Splines of the Fifth Order RecentAdvances in Mathematical and Computational Methods, Proc. of the 17thInternational Conf. on Mathematical and Computational Methods in Scienceand Engineering (MACMESE'15), Kuala Lumpur, Malaysia, April 23-25, 2015,pp. 6065.[77] Carl de BoorOn calculating with B-splines. J.
Approx. Theory 6, 1972, pp.A Practical Guide to Splines. Springer, New York, NY, USA,5062.[78] Carl de Boor1978.[79] C. de Boor, K. Hoellig and S. RiemenschneiderBox splines. Springer-Verlag,1993.[80] C. de Boor.Ecient computer manipulation of tensor products. ACM Trans.Math. Software 5, 1979, pp. 173-182.[81] Chui, Charles K, and Jian-zhong WangA cardinal spline approach to wavelets. Proceedings of American Mathematical Society 113: 1991, pp. 785793.[82] Chui, Charles K, and Jian-zhong WangOn Compactly Supported SplineWavelets and a Duality Principle.
Transactions of the American MathematicalSociety 330 (2): 1992, pp. 903915.97[83] C.K.Chui.Multivariate Splines.SocietyforIndustrialandAppliedMathematics (SIAM), Pensylvania, USA, 1988.[84] Fengmin Chen, Patricia J.Y.Wong,Quintic and biquintic caseOn periodic discrete spline interpolation:JournalofComputationalandAppliedMathematics, 255, 2014, pp. 282-296.[85] Fischer, M., Oja, P.Monotonicity preserving rational spline histopolation J.Comput. Appl.
175, 2005, pp. 195-208.[86] EricGrosse.Tensor spline approximation,LinearAlgebraanditsApplications, Vol. 34, December 1980, pp. 2941.[87] Ingrid DaubechiesTen Lectures on Wavelets. Philadelphia: Society forIndustrial and Applied Mathematics. 1992, pp. 146153.[88] Kobza, J.Spline recurrences for quartic splines. Acta Univ. Palacki. Olomuc,Fac rer. nat., Math. 34, 1995, pp. 75-89.[89] Kuragano,T.Quintic B-spline curve generation using given points andgradients and modication based on specied radius of curvature. WSEASTransactions on Mathematics, Vol. 9, Iss. 2, 2010, pp. 7989.[90] Lang, F.G., Xu, X.P.On integro quartic spline interpolation. J.
Comput.Appl. Math. 236, 2012, pp. 4214-4226.[91] Mehdi ZamaniData.A New, Robust and Applied Model for Approximation of Huge Wseas Transactions on Mathematics. Issue 6, Volume 12, June 2013pp. 727735.[92] Paul de CasteljauCourbes a poles. National Industrial Property Institute(France), 1959.[93] Rashidinia Jalil, Jalilian Reza.Problems..Spline Solution Of Two Point Boundary Value Appl. and Comput. Math. 9 (2), 2010, pp. 258266.[94] M.A.
Ramadan, I.F. Lashien, W.K. Zahra,Quintic nonpolynomial splinesolutions for fourth order two-point boundary value problem. CommunicationsIn Nonlinear Science and Numerical Simulation, 14 (4), 2009, pp. 11051114.98[95] Safak, S.On the trivariate polynomial interpolation. WSEAS Transactionson Mathematics. Vol. 11, Iss. 8, 2012, pp. 738746.[96] Sakai, M., Usmani, R.A.Cubic Splines.Numerical Integration Formulas Based on Iterated Computing, 52, 1994, pp. 309-314.[97] Sarfraz, M., Al-Dabbous, N.Curve representation for outlines of planar imagesusing multilevel coordinate search.,WSEAS Transactions on Computers. Vol.12, Iss. 2, 2013, pp.
6273.Generating outlines of generic shapes by mining feature points.,[98] Sarfraz, M.WSEAS Transactions on Systems, Vol. 13, 2014, pp. 584595.[99] Schoenberg, I. J.Contributions to the Problem of Approximation of EquidistantData by Analytic Functions.[100] Schoenberg, I. J. 1946.Cardinal Spline Interpolation. Regional Conference Seriesin Applied Mathematics, SIAM, Philadelphia, PA, (1973) 10. Schmidt, J.W.,Heß, W.: Shape preserving C2-spline histopolation, J. Approx.
Theory, 75, 1993,pp. 325-345.[101] Sergeev A., G., Krohin V.V.[102] Siewer, R.[103] Skala, V.,Metrologia.Histopolating splines. 2001. 408 p. J. Comput. Appl. 220, 2008, pp. 661-673.Fast interpolation and approximation of scattered multidimensionaland dynamic data using radial basis functions., WSEAS Transactions onMathematics. Vol. 12, Iss. 5, 2013, pp. 501511.[104] Wahba, G.Interpolating Spline Methods for Density Estimation I. Equi-Spaced Knots.
Ann. Statist. 3, 1975, pp. 30-48.[105] Wu, J., Zhang, X.Integro sextic spline interpolation and its super convergence. Appl. Math. Comput. 219, 2013, pp. 6431-6436.[106] Wu,J.,Zhang,X.Integro quadratic spline interpolation.AppliedMathematical Modelling, 39, 2015, pp. 2973-2980.[107] Xiaodong Zhuang, N. E. Mastorakis.,A Model of Virtual Carrier Immigrationin Digital Images for Region Segmentation.Computers, Vol. 14, 2015, pp. 708718.99WseasTransactionsOn[108] Xu, X.P., Lang, F.G.Quintic B-spline method for function reconstruction fromintegral values of successive subintervals. Numer.
Algor. 66, 2014, pp. 223-240.[109] Xufa FangAn Isoparametric Finite Element Method for Elliptic Interface. Problems with Nonhomogeneous Jump Conditions. Wseas Transactions onMathematics. Issue 1, Volume 12, January 2013. pp. 6675.[110] Zamani, M.,A new, robust and applied model for approximation of huge data.,WSEAS Transactions on Mathematics, Vol.















