Диссертация (1149607), страница 20
Текст из файла (страница 20)
Dipolar interaction between two-dimensionalmagnetic particles // Physical Review B. — 2002. — Vol. 66, no. 21. —P. 214414.[114] Varón M., Beleggia M., Kasama T. et al.; Dipolar magnetism in orderedand disordered low-dimensional nanoparticle assemblies // Scientificreports. — 2013. — Vol. 3. — P. 1234.[115] Yamamoto K., Hogg C. R., Yamamuro S. et al.; Dipolar ferromagneticphase transition in Fe 3 O 4 nanoparticle arrays observed by Lorentzmicroscopy and electron holography // Applied Physics Letters.
—2011. — Vol. 98, no. 7. — P. 072509.[116] Lin W.-C., Wu C., Hsu P.-J. et al.; Coverage dependence of magneticdomain structure and magnetic anisotropy in supported Fe nanoparticleson Al 2 O 3/NiAl (100) // Journal of Applied Physics. — 2010. — Vol.108, no. 3. — P. 034312.[117] Lin W.-C., Gai Z., Gao L.
et al.; Nanoscale magnetic configurationsof supported Fe nanoparticle assemblies studied by scanning electronmicroscopy with spin analysis // Physical Review B. — 2009. — Vol. 80,no. 2. — P. 024407.[118] Mishra D., Petracic O., Devishvili A. et al.; Polarized neutron reflectivity134from monolayers of self-assembled magnetic nanoparticles // Journal ofPhysics: Condensed Matter. — 2015. — Vol. 27, no. 13. — P. 136001.[119] Ewerlin M., Demirbas D., Brüssing F. et al.; Magnetic dipole and higherpole interaction on a square lattice // Physical review letters.
— 2013. —Vol. 110, no. 17. — P. 177209.[120] Jordanovic J., Beleggia M., Schiøtz J., Frandsen C.; Simulations ofsuper-structure domain walls in two dimensional assemblies of magneticnanoparticles // Journal of Applied Physics. — 2015. — Vol. 118, no. 4. —P. 043901.[121] Vázquez M. Magnetic nano-and microwires: design, synthesis, propertiesand applications. — Woodhead Publishing, 2015.[122] Zighem F., Mercone S. Magnetization reversal behavior in complexshaped Co nanowires: A nanomagnet morphology optimization //Journal of Applied Physics.
— 2014. — Vol. 116, no. 19. — P. 193904.[123] Fernández-Pacheco A., Serrano-Ramón L., Michalik J. M. et al.; Threedimensional magnetic nanowires grown by focused electron-beam induceddeposition // Scientific reports. — 2013. — Vol. 3. — P. 1492.[124] Bran C., Berganza E., Palmero E.
et al.; Spin configuration of cylindricalbamboo-like magnetic nanowires // Journal of Materials Chemistry C. —2016. — Vol. 4, no. 5. — Pp. 978–984.[125] Masuda H., Fukuda K. Ordered metal nanohole arrays made by a twostep replication of honeycomb structures of anodic alumina // science. —1995.
— Vol. 268, no. 5216. — Pp. 1466–1468.[126] High-density nickel nanowire arrays for data storage applications //Journal of Physics: Conference Series / IOP Publishing. — Vol. 345. —2012. — P. 012011.[127] Ivanov Y. P., Alfadhel A., Alnassar M. et al.; Tunable magnetic135nanowires for biomedical and harsh environment applications // Scientificreports. — 2016. — Vol. 6. — P. 24189.[128] Aharoni A. Angular dependence of nucleation by curling in a prolatespheroid // Journal of applied physics. — 1997. — Vol.
82, no. 3. —Pp. 1281–1287.[129] Escrig J., Lavin R., Palma J. et al.; Geometry dependence of coercivityin Ni nanowire arrays // Nanotechnology. — 2008. — Vol. 19, no. 7. —P. 075713.[130] Vivas L., Vazquez M., Escrig J. et al.; Magnetic anisotropy in CoNinanowire arrays: analytical calculations and experiments // PhysicalReview B. — 2012.
— Vol. 85, no. 3. — P. 035439.[131] Lavin R., Denardin J., Escrig J. et al.; Angular dependence of magneticproperties in Ni nanowire arrays // Journal of Applied Physics. — 2009. —Vol. 106, no. 10. — P. 103903.[132] Hertel R., Kirschner J. Magnetization reversal dynamics in nickelnanowires // Physica B: Condensed Matter. — 2004. — Vol. 343, no.
14. — Pp. 206–210.[133] Hertel R. Computational micromagnetism of magnetization processes innickel nanowires // Journal of Magnetism and Magnetic Materials. —2002. — Vol. 249, no. 1-2. — Pp. 251–256.[134] Grigoriev S., Grigoryeva N., Napolskii K. et al.; Arrays of interactingferromagnetic nanofilaments: Small-angle neutron diffraction study //JETP letters. — 2011. — Vol.
94, no. 8. — Pp. 635–641.[135] Zighem F., Maurer T., Ott F., Chaboussant G.; Dipolar interactions inarrays of ferromagnetic nanowires: A micromagnetic study // Journal ofApplied Physics. — 2011. — Vol. 109, no. 1. — P. 013910.[136] Vien G. N., Rioual S., Gloaguen F. et al.; Study of the magnetizationbehavior of ferromagnetic nanowire array: Existence of growth defects136revealed by micromagnetic simulations // Journal of Magnetism andMagnetic Materials.
— 2016. — Vol. 401. — Pp. 378–385.[137] Ivanov Y. P., Chubykalo-Fesenko O. Micromagnetic simulations ofcylindrical magnetic nanowires // Magnetic Nano-and Microwires. —Elsevier, 2015. — Pp. 423–448.[138] Vega V., Böhnert T., Martens S. et al.; Tuning the magnetic anisotropyof Co–Ni nanowires: comparison between single nanowires and nanowirearrays in hard-anodic aluminum oxide membranes // Nanotechnology. —2012. — Vol.
23, no. 46. — P. 465709.[139] Salem M. S., Sergelius P., Zierold R. et al.; Magnetic characterization ofnickel-rich NiFe nanowires grown by pulsed electrodeposition // Journalof Materials Chemistry. — 2012. — Vol. 22, no. 17. — Pp. 8549–8557.[140] Vivas L., Ivanov Y. P., Trabada D.
et al.; Magnetic properties of Conanopillar arrays prepared from alumina templates // Nanotechnology. —2013. — Vol. 24, no. 10. — P. 105703.[141] Cowburn R., Adeyeye A., Bland J. Magnetic domain formation inlithographically defined antidot Permalloy arrays // Applied physicsletters. — 1997. — Vol. 70, no. 17.
— Pp. 2309–2311.[142] Adeyeye A., Bland J., Daboo C. Magnetic properties of arrays of“holes” in Ni 80 Fe 20 films // Applied physics letters. — 1997. —Vol. 70, no. 23. — Pp. 3164–3166.[143] Yu C., Jiang H., Shen L. et al.; The magnetic anisotropy and domainstructure of permalloy antidot arrays // Journal of Applied Physics. —2000. — Vol.
87, no. 9. — Pp. 6322–6324.[144] Gräfe J., Weigand M., Träger N. et al.; Geometric control of themagnetization reversal in antidot lattices with perpendicular magneticanisotropy // Physical Review B. — 2016. — Vol. 93, no. 10. — P. 104421.137[145] Schneider T., Langer M., Alekhina J. et al.; Programmability of Coantidot lattices of optimized geometry // Scientific Reports. — 2017. —Vol. 7. — P. 41157.[146] Cumings J., Heyderman L.
J., Marrows C., Stamps R.; Focus on artificialfrustrated systems // New Journal of Physics. — 2014. — Vol. 16, no. 7. —P. 075016.[147] Castán-Guerrero C., Bartolomé J., Bartolomé F. et al.; Coercivitydependence on periodicity of Co and Py antidot arrays // Journal ofthe Korean Physical Society. — 2013. — Vol. 62, no. 10. — Pp. 1521–1524.[148] Michea S., Palma J., Lavı́n R. et al.; Tailoring the magnetic propertiesof cobalt antidot arrays by varying the pore size and degree of disorder //Journal of Physics D: Applied Physics.
— 2014. — Vol. 47, no. 33. —P. 335001.[149] Papaioannou E. T., Kapaklis V., Patoka P. et al.; Magneto-opticenhancement and magnetic properties in Fe antidot films with hexagonalsymmetry // Physical Review B. — 2010. — Vol. 81, no. 5. — P. 054424.[150] Neusser S., Grundler D. Magnonics: spin waves on the nanoscale //Advanced Materials. — 2009. — Vol. 21, no. 28. — Pp. 2927–2932.[151] Guo J., Jalil M. B. A. Simulation of magnetic recording of periodicantidot array // Journal of magnetism and magnetic materials. — 2004. —Vol. 272. — Pp.
722–723.[152] Heyderman L. J., Nolting F., Backes D. et al.; Magnetization reversal incobalt antidot arrays // Physical Review B. — 2006. — Vol. 73, no. 21. —P. 214429.[153] Mengotti E., Heyderman L. J., Nolting F. et al.; Easy axis magnetizationreversal in cobalt antidot arrays // Journal of Applied Physics. — 2008. —Vol. 103, no. 7. — P. 07D509.138[154] Wiedwald U., Gräfe J., Lebecki K. M. et al.; Magnetic switching ofnanoscale antidot lattices // Beilstein journal of nanotechnology. —2016. — Vol.
7. — P. 733.[155] Haering F., Wiedwald U., Häberle T. et al.; Geometry-induced spinice structures prepared by self-organization on the nanoscale //Nanotechnology. — 2013. — Vol. 24, no. 5. — P. 055305.[156] Lenk B., Ulrichs H., Garbs F., Münzenberg M.; The building blocks ofmagnonics // Physics Reports. — 2011. — Vol.
507, no. 4-5. — Pp. 107–136.[157] Gräfe J., Haering F., Tietze T. et al.; Perpendicular magnetisationfrom in-plane fields in nano-scaled antidot lattices // Nanotechnology. —2015. — Vol. 26, no. 22. — P. 225203.[158] Sander D., Valenzuela S., Makarov D. et al.; The 2017 magnetismroadmap // Journal of Physics D: Applied Physics. — 2017. — Vol. 50,no. 36. — P. 363001.[159] Donnelly C., Guizar-Sicairos M., Scagnoli V.
et al.; Element-specific Xray phase tomography of 3D structures at the nanoscale // Physicalreview letters. — 2015. — Vol. 114, no. 11. — P. 115501.[160] Okuda M., Schwarze T., Eloi J. et al.; Top-down design of magnoniccrystals from bottom-up magnetic nanoparticles through proteinarrays // Nanotechnology. — 2017. — Vol.
28, no. 15. — P. 155301.[161] Hsueh H.-Y., Huang Y.-C., Ho R.-M. et al.; Nanoporous gyroid nickelfrom block copolymer templates via electroless plating // AdvancedMaterials. — 2011. — Vol. 23, no. 27. — Pp. 3041–3046.[162] Bran C., Ivanov Y. P., Kosel J. et al.; Co/Au multisegmented nanowires:a 3D array of magnetostatically coupled nanopillars // Nanotechnology. —2017. — Vol.















